Advanced Diploma of Electronics and Communications Engineering

Get started in a career that will see you design and develop electronic products and processes that make a difference in this vocationally oriented program.

You’ll develop skills to design, validate and evaluate electronics and communication equipment as well as systems. You’ll also be able to manage risk; estimate and manage projects; and provide technical and sales advice.

Note: Programs may change as training packages are updated.

Industry connections
RMIT has a strong Industry Advisory Committee (IAC), which links the program and industry. The IAC includes representatives from local computer systems industries.

The committee meets twice yearly and provides feedback on our programs to ensure that they reflect the changing needs of industry.

You’ll also be able to connect with industry representatives through participation in seminars, marketing events, industry awards and scholarships.

Career outlook
As a graduate of this program you may work in a range of industries/fields, such as manufacturing; telecommunications; radio communications; electronics equipment and services; security systems; scientific instruments and sales; and administering and upgrading electronics and communications equipment and facilities in small, medium or large-sized enterprises.

Your skills will be applicable to a wide range of business, manufacturing and operational occupations where application of knowledge in electronics and communications underpins the business operations.

Professional recognition
This program is fully accredited by Engineers Australia. Graduates of the program will be eligible for graduate membership of Engineers Australia at Engineering Associate level.

Australia is a signatory to the International Engineering Alliance, also known as the Dublin Accord, for engineering technicians. Graduates of the program will be recognised in all countries that are signatories to the accord.

Pathways
Graduates who achieve a grade point average (GPA) of at least 3.0 out of 4.0 may be eligible to receive one-and-a-half years credit (equivalent to 144 credits) for the following programs, if successful in gaining a place:

- Bachelor of Engineering (Telecommunications Engineering) (Honours)
- Bachelor of Engineering (Electrical and Electronic Engineering) (Honours).

Please note that you will need to complete some units that are only offered in first semester. While the total number of credits in advanced standing equates to 144 credits points (equivalent to one-and-a-half years of study), the amount of time required to complete the remaining study may exceed two-and-a-half years.

International opportunities
Through partner organisations in Europe, Asia and the United States, the RMIT International Industry Experience and Research Program (RIIERP) offers workplace training and academic research placements of between six and 12 months.

There are also opportunities to study abroad through Education Abroad.

Entrance requirements
Successful completion of an Australian Year 12 senior secondary certificate of education or equivalent.

Additional information
Non-Year 12 applicants may submit additional information if they would like it to be considered. For semester 1 intake, this can be completed through the VTAC Personal Statement online. For semester 2 intake, this can be completed through the personal statement in the Apply Direct application.

For local fee information: rmit.edu.au/programs/fees

City campus

vtac.edu.au

Semester 1: VTAC
Semester 2: Direct to RMIT
rmit.edu.au/programs/apply/direct

www.rmit.edu.au/programs/c6122
Program structure

This program blends practical experience with electronics and communications applications built on a strong theoretical foundation. You’ll learn how to test, assemble, install and maintain electronics and communications equipment and systems; manage risk; estimate and manage projects; and provide technical advice.

You’ll gain skills in computer-aided drafting and electronic design; computer interfacing; microprocessor programming; design, testing and commissioning of analogue and digital electronics systems; computer programming; and perform simulations using various engineering software packages.

If you aspire to undertake a degree, this program offers a specialised articulation stream.

<table>
<thead>
<tr>
<th>Core units (Mandatory)</th>
<th>Specialist units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop design briefs for electrotechnology projects (UEENEE015B)</td>
<td>Repairs basic electronic apparatus faults by replacement of components (UEENEEH102A)</td>
</tr>
<tr>
<td>Participate in development and follow a personal competency development plan (UEENEE038B)</td>
<td>Troubleshoot digital sub-systems (UEENEEH112A)</td>
</tr>
<tr>
<td>Contribute to risk management in electrotechnology systems (UEENEE078B)</td>
<td>Troubleshoot amplifiers in an electronic apparatus (UEENEEH113A)</td>
</tr>
<tr>
<td>Apply occupational health and safety regulations, codes and practices in the workplace (UEENEE010A)</td>
<td>Troubleshoot resonance circuits in an electronic apparatus (UEENEEH114A)</td>
</tr>
<tr>
<td>Implement and monitor energy sector OHS policies and procedures (UEENEE0117A)</td>
<td>Develop software solutions for microcontroller based systems (UEENEEH115A)</td>
</tr>
<tr>
<td>Document and apply measures to control OHS risks associated with electrotechnology work (UEENEE0137A)</td>
<td>Find and repair microwave amplifier section faults in electronic apparatus (UEENEEH116A)</td>
</tr>
<tr>
<td>Manage computer systems/electronics projects (UEENEE0141A)</td>
<td>Troubleshoot basic amplifier circuits (UEENEEH139A)</td>
</tr>
<tr>
<td>Commission electronics and communications systems (UEENEE0167A)</td>
<td>Solve fundamental electronic communications system problems (UEENEEH146A)</td>
</tr>
<tr>
<td>Modify-redesign of electronics and communications systems (UEENEE0168A)</td>
<td>Troubleshoot microcontroller based hardware systems (UEENEEH166A)</td>
</tr>
<tr>
<td>Design and develop electronics/computer systems projects (UEENEE0188A)</td>
<td>Solve problems in basic electronic circuits (UEENEEH169A)</td>
</tr>
<tr>
<td>Develop strategies to address environmental and sustainability issues in the energy sector (UEENEE0132A)</td>
<td>Troubleshoot communication systems (UEENEEH172A)</td>
</tr>
<tr>
<td>Assemble electronic components (UEENEEA0101A)</td>
<td>Evaluate and modify object oriented code programs (UEENEEH103A)</td>
</tr>
<tr>
<td>Use software (UEENEE0104A)</td>
<td>Provide solutions to basic engineering computational problems (UEENEEH126A)</td>
</tr>
<tr>
<td>Fabricate, assemble and dismantle utilities industry components (UEENEE0120A)</td>
<td>Develop engineering solutions to analogue electronic problems (UEENEEH145A)</td>
</tr>
<tr>
<td>Solve problems in d.c. circuits (UEENEE0140A)</td>
<td>Design and develop advanced digital systems (UEENEEH148A)</td>
</tr>
</tbody>
</table>

This program is structured to deliver competencies, knowledge and skills required by the nationally accredited Electrotechnology Training Package. It includes core and specialist units in the major study areas.

This information is designed for Australian and New Zealand citizens and permanent residents of Australia.

Disclaimer: Every effort has been made to ensure the information contained in this publication is accurate and current at the date of printing. For the most up-to-date information, please refer to the RMIT University website before lodging your application. Visit www.rmit.edu.au.