Bachelor of Science – Biology major

Study all living things, from tiny bacteria through to large plants and ecosystems with a major in biology.

The Bachelor of Science is a flexible program allowing you to major in biology, biotechnology, chemistry, environmental science, food science or physics.

If you choose to major in biology, you will study the biological diversity of plants, animals and microbes and expand your understanding of the chemical and physical basis of how cells function. You will learn how these biological entities come together in various environments to form ecosystems, and understand how these environments can be disrupted.

In addition to studying courses from your chosen major, you can tailor your program through elective courses. This gives you the flexibility to combine your major field of study with a variety of other science courses.

Practical experiences are fundamental to the program and you'll get the opportunity to apply your knowledge and skills to projects. You'll also have access to state-of-the-art facilities to ensure you're job-ready when you graduate.

Industry connections
You will have the opportunity to work on research projects and practical activities, often undertaken in collaboration with industry.

The final year Science Project will also provide you with the opportunity to develop an independent research project which can involve an industry partner.

Career outlook
Biology graduates work in nearly every area of biotechnology and biosciences - from gene manipulation in mammals to toxin testing in waterways and crop protection all over the world.

Graduates can work in a variety of settings in and out of laboratories including:
- medical and research laboratories
- research laboratories
- marine environments
- genetics laboratories
- government organisations.

International opportunities
RMIT partners with over 150 organisations around the world to provide you with global work and study opportunities. You could spend a semester studying abroad, take part in a study tour or complete an international internship.

Professional recognition
Graduates of the biology major can apply for professional membership of the Australian Institute of Biology.

Pathways
Graduates of the RMIT Associate Degree in Applied Science bioscience stream with a grade point average (GPA) of at least 2.0 out of 4.0 may be able to receive credit of up to 2 years (equivalent to 192 credit points).

Graduates of the RMIT Diploma of Laboratory Technology who are successful in gaining a place may be able to receive credit if up to 1 year (equivalent to 96 credit points).

www.rmit.edu.au/programs/bp229
Program Structure

The program offers a wide variety of learning experiences including laboratory and practical work, working in the field, formal lectures, and working with industry on self-directed projects.

Year 1
You’ll study foundation courses in biology, chemistry, physics and maths, and be introduced to scientific skills and communication.

You will also start to study biology courses including cell structure and function, animal structure, function and reproduction of the major vertebrate groups, microbiology, genetics and immunology.

Years 2
In second year you will continue to focus your studies on biology. This will include a more advanced understanding of invertebrate and vertebrate diversity, plant structure and function, microbiology, ecology, genetics and molecular biology, and chemistry for biologists.

You will also have the opportunity to choose elective courses from other areas.

Year 3
As well as focusing on your specialty, you’ll be introduced to electives to expand your science knowledge. These can enhance your specialty or broaden your overall studies.

In third year you’ll delve deeper into your specialist area and engage in work-integrated learning courses (like The Professional Scientist and Science Project).

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Cell Structure and Function</th>
<th>Chemistry Principles</th>
<th>Physics for Leaders</th>
<th>Mathematics and Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scientific Skills and Communication</td>
<td>Introduction to Microbiology, Immunology and Genetics</td>
<td>Animal Structure and Function</td>
<td>Science elective</td>
</tr>
<tr>
<td>Year 2</td>
<td>Animal Diversity</td>
<td>Microbiology</td>
<td>Plant Structure and Function</td>
<td>Biological Chemistry</td>
</tr>
<tr>
<td></td>
<td>Plant Diversity</td>
<td>Ecology</td>
<td>Genetics and Molecular Biology</td>
<td>University elective</td>
</tr>
<tr>
<td>Year 3</td>
<td>Marine Biology</td>
<td>Environmental Biotechnology</td>
<td>Cell and Tissue Culture</td>
<td>The Professional Scientist</td>
</tr>
<tr>
<td></td>
<td>Ecotoxicology</td>
<td>Science elective</td>
<td>University elective</td>
<td>Science Project</td>
</tr>
</tbody>
</table>

| Compulsory courses | Program course | University electives |

Entrance requirements
Successful completion of an Australian Year 12 senior secondary certificate of education or equivalent.

Prerequisites
Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

Additional information
Non-Year 12 applicants may submit additional information if they would like it to be considered. For semester 1 intake, this can be completed through the VTAC Personal Statement online. For semester 2 intake, this can be completed through the personal statement in the Apply Direct application.
Bachelor of Science – Biotechnology major

Learn how to apply biological principles to technologies and products with a major in biotechnology.

The Bachelor of Science is a flexible program allowing you to major in biology, biotechnology, chemistry, environmental science, food science or physics. If you choose to major in biotechnology you will study the major biological sciences, including genetics, biochemistry, microbiology, animal and plant science, as well as specialising in bioinformatics, gene technologies and proteomics.

Biotechnology looks for ways to use biology to solve real-life problems. Biotechnologists use cutting-edge techniques and equipment to study and manipulate living organisms for research and product development.

In addition to studying courses from your chosen major, you can tailor your program through elective courses. This gives you the flexibility to combine your major field of study with a variety of other science courses.

Practical experiences are fundamental to the program and you’ll get the opportunity to apply your knowledge and skills to projects. You’ll also have access to state-of-the-art facilities to ensure you’re job-ready when you graduate.

Industry connections
You will have the opportunity to work on research projects and practical activities, often undertaken in collaboration with industry.

The final year Science Project will also provide you with the opportunity to develop an independent research project which can involve an industry partner.

Career outlook
Biological sciences graduates work in nearly every area of biotechnology and biosciences – from gene manipulation in mammals to toxin testing in waterways and crop protection all over the world.

Graduates can work in a variety of settings in and out of laboratories including:
- medical and research laboratories
- research laboratories
- hospitals
- industrial manufacturing
- agricultural research industry
- government organisations.

International opportunities
RMIT partners with over 150 organisations around the world to provide you with global work and study opportunities. You could spend a semester studying abroad, take part in a study tour or complete an international internship.

Professional recognition
Graduates of the biotechnology major can apply for professional membership of:
- The Australian Society for Microbiology
- The Australian Society for Biochemistry and Molecular Biology

www.rmit.edu.au/programs/bp229
Program Structure

The program offers a wide variety of learning experiences including laboratory and practical work, working in the field, formal lectures, and working with industry on self-directed projects.

Year 1
You’ll study foundation courses in biology, chemistry, physics and maths, and be introduced to scientific skills and communication.

You’ll also start to study biotechnology courses, the inter-related subjects of microbiology, immunology and genetics and an introduction to animal structure and function.

Year 2
In second year, you’ll focus your studies on biotechnology. This will include further studies in microbiology and advanced aspects of genetics and inheritance.

You will also have the opportunity to choose elective courses from other areas.

Year 3
Your final year will focus on more advanced biotechnology courses.

The final year Science Project also gives you the opportunity to work on a small research project under the supervision of an academic staff member. You may have the opportunity to collaborate with an external organisation on this project.

Suggested Structure

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Cell Structure and Function</th>
<th>Chemistry Principles</th>
<th>Physics for Leaders</th>
<th>Mathematics and Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scientific Skills and Communication</td>
<td>Introduction to Microbiology, Immunology and Genetics</td>
<td>Animal Structure and Function</td>
<td>University elective</td>
</tr>
<tr>
<td>Year 2</td>
<td>Microbiology</td>
<td>Biological Chemistry</td>
<td>Cell and Tissue Culture</td>
<td>Science elective</td>
</tr>
<tr>
<td></td>
<td>Genetics and Molecular Biology</td>
<td>Bioinformatics</td>
<td>University elective</td>
<td>Science elective</td>
</tr>
<tr>
<td>Year 3</td>
<td>Gene Technologies</td>
<td>Industrial Microbiology</td>
<td>The Professional Scientist</td>
<td>Science elective</td>
</tr>
<tr>
<td></td>
<td>Functional Genomics and Proteomics</td>
<td>Molecular Agriculture</td>
<td>Science Project</td>
<td>Science elective</td>
</tr>
</tbody>
</table>

- ○ Compulsory courses
- ● Program course
- ○ University electives

Entrance requirements
Successful completion of an Australian Year 12 senior secondary certificate of education or equivalent.

Prerequisites
Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

Additional information
Non-Year 12 applicants may submit additional information if they would like it to be considered. For semester 1 intake, this can be completed through the VTAC Personal Statement online. For semester 2 intake, this can be completed through the personal statement in the Apply Direct application.

This information is designed for Australian and New Zealand citizens and permanent residents of Australia.

Disclaimer: Every effort has been made to ensure the information contained in this publication is accurate and current at the date of printing. For the most up-to-date information, please refer to the RMIT University website before lodging your application. Visit www.rmit.edu.au.

Bachelor of Science – Chemistry major

Study the molecular basis of chemical reactions with a major in chemistry.

The Bachelor of Science is a flexible program allowing you to major in biology, biotechnology, chemistry, environmental science, food science or physics.

Chemistry looks at materials to determine their composition and chemical properties. If you choose to major in chemistry you’ll learn concepts of inorganic, organic and physical chemistry and how these are applied in analysis, synthesis and detection of chemical substances.

In addition to studying courses from your chosen major, you can tailor your program through elective courses. This gives you the flexibility to combine your major field of study with a variety of other science courses.

Practical experiences are fundamental to the program and you’ll get the opportunity to apply your knowledge and skills to projects. You’ll also have access to state-of-the-art facilities to ensure you’re job-ready when you graduate.

Industry connections
You will have the opportunity to work on research projects and practical activities, often undertaken in collaboration with industry.

The final year Science Project will also provide you with the opportunity to develop an independent research project which can involve an industry partner.

Career outlook
Chemistry graduates can pursue careers in manufacturing; professional, scientific and technical services; education and training and electricity; gas, water and waste services.

Graduates can work in a variety of settings in and out of laboratories in areas including:
- industrial chemistry
- analytical chemistry
- polymers
- energy sources.

International opportunities
RMIT partners with over 150 organisations around the world to provide you with global work and study opportunities. You could spend a semester studying abroad, take part in a study tour or complete an international internship.

Professional recognition
Graduates of the chemistry major can apply for professional membership of the Royal Australian Chemical Institute.
Program Structure

The program offers a wide variety of learning experiences including laboratory and practical work, working in the field, formal lectures, and working with industry on self-directed projects.

Year 1
You’ll study foundation courses in chemistry, biology, physics and maths, and be introduced to scientific skills and communication.

You will also start to focus your chemistry courses including physical, organic and inorganic chemistry as well as instrumental techniques and material chemistry.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Cell Structure and Function OR Life on Earth</th>
<th>Chemistry of Materials 1</th>
<th>Mechanics OR Physics for Leaders</th>
<th>Mathematics and Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scientific Skills and Communication</td>
<td>Chemistry of Materials 2</td>
<td>Analytical Science</td>
<td>Science elective</td>
</tr>
</tbody>
</table>

Year 2
In second year you will continue to focus your studies on chemistry. This will include a more advanced understanding of organic, inorganic and physical chemistry, spectroscopy to identify organic molecules, chromatography and environmental analysis.

You will also have the opportunity to choose elective courses from other areas.

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Chemistry Theory 2A</th>
<th>Chemistry Laboratory 2A</th>
<th>Analytical Spectroscopy</th>
<th>Science elective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instrumental and Environmental Analysis</td>
<td>Chemistry Laboratory 2B</td>
<td>University elective</td>
<td></td>
</tr>
</tbody>
</table>

Year 3
Your final year will focus on more advanced chemistry courses.

The final year Science Project also gives you the opportunity to work on a small research project under the supervision of an academic staff member. You may have the opportunity to collaborate with an external organisation on this project.

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Chemistry Theory 3A</th>
<th>Chemistry Lab 3</th>
<th>Advanced Instrumental Analysis</th>
<th>The Professional Scientist</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Advanced Spectroscopic Analysis</td>
<td>University elective</td>
<td>Science Project</td>
<td></td>
</tr>
</tbody>
</table>

- Compulsory courses
- Program course
- University electives

Entrance requirements
Successful completion of an Australian Year 12 senior secondary certificate of education or equivalent.

Prerequisites
Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

Additional information
Non-Year 12 applicants may submit additional information if they would like it to be considered. For semester 1 intake, this can be completed through the VTAC Personal Statement online. For semester 2 intake, this can be completed through the personal statement in the Apply Direct application.
Bachelor of Science – Environmental science major

Learn about all aspects of the environment with a major in environmental science.

The Bachelor of Science is a flexible program allowing you to major in biology, biotechnology, chemistry, environmental science, food science or physics.

Environmental science is the study of the relationship between organisms and their environment. It combines aspects of chemistry and biology that are particularly relevant to studying the local environment.

If you choose to major in environmental science your studies will focus on the atmosphere (air), hydrosphere (oceans, rivers and lakes), biosphere (plants, animals and micro-organisms) and the lithosphere (soil).

In addition to studying courses from your chosen major, you can tailor your program through elective courses. This gives you the flexibility to combine your major field of study with a variety of other science courses.

Practical experiences are fundamental to the program and you’ll get the opportunity to apply your knowledge and skills to projects. You’ll also have access to state-of-the-art facilities to ensure you’re job-ready when you graduate.

Industry connections

You will have the opportunity to work on research projects and practical activities, often undertaken in collaboration with industry.

The final year Science Project will also provide you with the opportunity to develop an independent research project which can involve an industry partner.

Career outlook

Graduates may find employment in environmental consultancies, government agencies, resource management, research and education, and the mining/manufacturing industries.

Typical tasks graduates perform include:
- sample collection and analysis
- waste management
- ongoing monitoring and assessment
- environmental impact assessment
- site remediation
- policy development
- cleaner production
- environmental education and training
- environmental auditing.

Work may involve report writing, laboratory work, field work, research or a combination of these.

International opportunities

RMIT partners with over 150 organisations around the world to provide you with global work and study opportunities. You could spend a semester studying abroad, take part in a study tour or complete an international internship.

Professional recognition

Graduates of the environmental science major can apply for professional membership of the Environment Institute of Australia and New Zealand.

www.rmit.edu.au/programs/bp229
Program Structure

The program offers a wide variety of learning experiences including laboratory and practical work, working in the field, formal lectures, and working with industry on self-directed projects.

Year 1
You’ll study foundation courses in biology, chemistry, physics and maths, and be introduced to scientific skills and communication.

You’ll also start to study environmental science courses, including the processes involved in the development of the Earth.

Year 2
In second year, you’ll focus your studies on environmental science. This will include studying the processes that occur in the hydrosphere and atmosphere. You’ll also study topics related to soil science and ecology.

You will also have the opportunity to choose elective courses from other areas.

Year 3
Your final year will focus on more advanced environmental science courses.

The final year Science Project also gives you the opportunity to work on a small research project under the supervision of an academic staff member. You may have the opportunity to collaborate with an external organisation on this project.

Suggested Structure

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Cell Structure and Function OR Life on Earth</th>
<th>Chemistry Principles</th>
<th>Physics for Leaders</th>
<th>Mathematics and Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scientific Skills and Communication</td>
<td>Energy and Earth’s Environment</td>
<td>The Changing Environment</td>
<td>University elective</td>
</tr>
<tr>
<td>Year 2</td>
<td>The Hydrosphere</td>
<td>Environmental Chemistry 2A OR Animal Diversity</td>
<td>The Soil Environment</td>
<td>Science elective</td>
</tr>
<tr>
<td></td>
<td>Ecology</td>
<td>Environmental Chemistry 2B OR Plant Diversity</td>
<td>University elective</td>
<td>Science elective</td>
</tr>
<tr>
<td>Year 3</td>
<td>The Atmosphere</td>
<td>Environmental Sampling and Analysis</td>
<td>The Professional Scientist</td>
<td>Environmental Biotechnology</td>
</tr>
<tr>
<td></td>
<td>Ecotoxicology</td>
<td>Science Project</td>
<td>Science elective</td>
<td>Science elective</td>
</tr>
</tbody>
</table>

- Compulsory courses
- Program course
- University electives

Entrance requirements
Successful completion of an Australian Year 12 senior secondary certificate of education or equivalent.

Prerequisites
Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

Additional information
Non-Year 12 applicants may submit additional information if they would like it to be considered. For semester 1 intake, this can be completed through the VTAC Personal Statement online. For semester 2 intake, this can be completed through the personal statement in the Apply Direct application.
Bachelor of Science – Food science major

Discover the science behind new food products and large-scale food manufacturing with a major in food science.

The Bachelor of Science is a flexible program allowing you to major in biology, biotechnology, chemistry, environmental science, food science or physics.

If you choose to major in food science you will learn to apply science knowledge and skills to develop goods and services for the marketplace to meet those needs.

Food scientists use analytical techniques to test properties of food including nutritional value, flavour and to ensure the safety of food products. They can also develop new products and manufacturing methods.

In addition to studying courses from your chosen major, you can tailor your program through elective courses. This gives you the flexibility to combine your major field of study with a variety of other science courses.

Practical experiences are fundamental to the program and you’ll get the opportunity to apply your knowledge and skills to projects. You’ll also have access to state-of-the-art facilities to ensure you’re job-ready when you graduate.

Industry connections
You will have the opportunity to work on research projects and practical activities, often undertaken in collaboration with industry.

The final year Science Project will also provide you with the opportunity to develop an independent research project which can involve an industry partner.

Career outlook
Food science graduates may work in large-scale production (processing, manufacturing, packaging, management), laboratories (research and analysis, development of new products, quality assurance) or government departments/regulatory bodies (food standards, dietary studies).

International opportunities
RMIT partners with over 150 organisations around the world to provide you with with global work and study opportunities. You could spend a semester studying abroad, take part in a study tour or complete an international internship.

Professional recognition
Graduates of the food science major can apply for professional membership of the Australian Institute of Food Science and Technology.

Program snapshot
Program code: BP229

DURATION
Full-time 3 years
Part-time may be available

LOCATION
City campus

SELECTION MODE
ATAR (2016: 68.00)

HOW TO APPLY
Semester 1: VTAC
vtac.edu.au
Semester 2: Direct to RMIT
rmit.edu.au/programs/apply/direct

FEES
For local fee information:
rmit.edu.au/programs/fees

CONTACT
Info Corner
330 Swanston Street
(cnr La Trobe Street)
Melbourne VIC 3000
Tel. +61 3 9925 2260

www.rmit.edu.au/programs/bp229
Program Structure

Year 1
You’ll study foundation courses in biology, chemistry, physics and maths, and be introduced to scientific skills and communication.

You’ll also start to study food science courses that introduce you to the food industry and nutrition.

Year 2
In second year, you’ll focus your studies on food science. This will include an understanding of proteins, carbohydrates and lipids as well as food processing techniques.

You will also have the opportunity to choose elective courses from other areas.

Year 3
Your final year will focus on more advanced food processing technology and product development.

The final year Science Project also gives you the opportunity to work on a small research project under the supervision of an academic staff member. You may have the opportunity to collaborate with an external organisation on this project.

Suggested Structure

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Structure and Function</td>
<td>Chemistry Principles</td>
<td>Physics for Leaders</td>
</tr>
<tr>
<td>Scientific Skills and Communication</td>
<td>Nutrition Principles</td>
<td>Introduction to Microbiology for Food and Nutrition</td>
</tr>
<tr>
<td>Year 2</td>
<td>Food Ingredient Structure and Function</td>
<td>Food Toxicology, Allergens and Health</td>
</tr>
<tr>
<td>Thermal Food Processing</td>
<td>Food Microbiology</td>
<td>University elective</td>
</tr>
<tr>
<td>Year 3</td>
<td>Food Manufacturing Animal Products</td>
<td>Product Development</td>
</tr>
<tr>
<td>Food Safety and Quality Assurance</td>
<td>Food Manufacturing Plant Products</td>
<td>Science Project</td>
</tr>
</tbody>
</table>

Entrance requirements
Successful completion of an Australian Year 12 senior secondary certificate of education or equivalent.

Prerequisites
Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

Additional information
Non-Year 12 applicants may submit additional information if they would like it to be considered. For semester 1 intake, this can be completed through the VTAC Personal Statement online. For semester 2 intake, this can be completed through the personal statement in the Apply Direct application.
Bachelor of Science – Physics major

Explore the interaction of matter and energy with a major in physics.

The Bachelor of Science is a flexible program allowing you to major in biology, biotechnology, chemistry, environmental science, food science or physics. If you choose to major in physics you will explore studies in material, thermal, optics, radiation, electromagnetism and quantum physics. Physics is a broad area ranging from subatomic particles to galaxies and the universe.

Physicists can design and engineer material, machines and systems capable of imagining and manipulating single molecules and atoms.

In addition to studying courses from your chosen major, you can tailor your program through elective courses. This gives you the flexibility to combine your major field of study with a variety of other science courses.

Practical experiences are fundamental to the program and you’ll get the opportunity to apply your knowledge and skills to projects. You’ll also have access to state-of-the-art facilities to ensure you’re job-ready when you graduate.

Industry connections

You will have the opportunity to work on research projects and practical activities, often undertaken in collaboration with industry.

The final year Science Project will also provide you with the opportunity to develop an independent research project which can involve an industry partner.

Career outlook

Physics graduates can work in advanced coatings, surface engineering, acoustics, geophysics, optics, radiation, soft condensed matter, materials modelling and simulation.

Graduates can work in a variety of settings in and out of laboratories including:

- medical and research laboratories
- research laboratories
- marine environments
- genetics laboratories
- government organisations.

International opportunities

RMIT partners with over 150 organisations around the world to provide you with global work and study opportunities. You could spend a semester studying abroad, take part in a study tour or complete an international internship.

Professional recognition

Graduates of the biology major can apply for professional membership of the Australian Institute of Physics.
Program Structure

The program offers a wide variety of learning experiences including laboratory and practical work, working in the field, formal lectures, and working with industry on self-directed projects.

Year 1
You’ll study foundation courses in biology, chemistry, physics and maths, and be introduced to scientific skills and communication.

You’ll also start to study physics courses, including physical quantities and laws of motion, force, momentum and energy, thermodynamics and electromagnetism.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Life on Earth</th>
<th>Chemistry Principles</th>
<th>Mechanics</th>
<th>Calculus and Analysis 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year 2
In second year, you’ll focus your studies on physics. This will include a more advanced understanding of thermal physics and materials science, advanced mathematics, quantum physics and electromagnetic radiation.

You will also have the opportunity to choose elective courses from other areas.

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Mathematics for Physicists</th>
<th>Materials and Thermal Physics</th>
<th>Optics and Radiation Physics</th>
<th>Science elective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year 3
Your final year will focus on more advanced physics courses.

The final year Science Project also gives you the opportunity to work on a small research project under the supervision of an academic staff member. You may have the opportunity to collaborate with an external organisation on this project.

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Quantum and Statistical Physics</th>
<th>Applied Physics</th>
<th>The Professional Scientist</th>
<th>University elective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entrance requirements
Successful completion of an Australian Year 12 senior secondary certificate of education or equivalent.

Prerequisites
Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

Additional information
Non-Year 12 applicants may submit additional information if they would like it to be considered.
For semester 1 intake, this can be completed through the VTAC Personal Statement online.
For semester 2 intake, this can be completed through the personal statement in the Apply Direct application.