2012
DEGREE AND
DIPLOMA
SCIENCE

SEE THE
BIGGER
PICTURE
NO OTHER FIELD CAN MATCH THE POTENTIAL TO SAVE LIVES, PRESERVE THE ENVIRONMENT AND IMPROVE THE WAY WE LIVE.
At RMIT I have gained hands-on laboratory skills along with the theoretical knowledge to back them up. The highlight of my studies has been my industry placement at the Victorian Clinical Genetics Service. This experience has given me the confidence to work in a medical laboratory and tackle unfamiliar problems.

Andrew Hewitt (cover image)
Bachelor of Science (Applied Sciences)

RMIT’s science programs are connected, relevant and focused on helping you make an impact in your chosen field.

Employment opportunities are everywhere, because science graduates are employed in a diverse range of jobs across all industries.

You can choose from a range of specialised programs:

» biotechnology sciences
» chemistry
» food science and technology
» geospatial science and surveying
» mathematics and statistics
» nanotechnology
» physics
» science.

Many science degrees include optional work experience with a relevant industry organisation or involvement in a science research project, exposing you to real problems and developing research solutions in a practical setting.

What will you discover?

‘I chose RMIT knowing that the university has a very hands-on approach in teaching and learning, the techniques that are required in the workforce. I have always had an interest in science, in particular biology. The combination of courses offered in the biotechnology degree fulfilled my passions and interests, keeping me constantly motivated to learn more.’

ROSIE MILLEN, BACHELOR OF SCIENCE (BIOTECHNOLOGY)
'I chose RMIT because it is renowned for its integration of theoretical studies with practical components, which is particularly important in the field of applied sciences. Although RMIT offers many different streams of science, I had always had a particular interest in biology, gene technologies and in particular health sciences, therefore the booming field of biotechnology was very appealing to me.

‘Biotechnology is most important for its implications in health and medicine, such as the manufacture of interferon for cancer patients, insulin for diabetics and human growth hormones among many others. I have gained an incredible amount of practical skills, which is due to applied laboratory classes, which provide a very hands-on approach to learning and reinforces theoretical work.

‘The program includes a compulsory work experience component in the final year, and the opportunity to complete electives throughout the three years.

‘I have made some great friends through my program, not only with other students but also with laboratory demonstrators (PhD students). Both this and knowing that as a biotechnology graduate I will have a lasting impact on the lives of many have been highlights of my degree so far.

‘Biotechnology is set to have a massive impact on virtually all aspects of life in the twenty-first century through agriculture, medicine, manufacturing and the environment. My interests lie largely in medicine and health, as the prospect of increasing the quality of life for those who are not in good health is both a gratifying and a selfless occupation.

‘For me, my degree will most likely lead to postgraduate study, followed by research at one of Melbourne’s internationally recognised research facilities.’

Will Howden
Bachelor of Science (Biotechnology)
What you will study

In first year, you will study foundation courses in biology (cells, genetics, animals, plants, microbes), chemistry and statistics to provide a solid basis for later years.

In second year you will study courses that broaden your knowledge (microbiology, biochemistry, genetics) as well as starting to specialise in biotechnology (bioinformatics, molecular biology, cell culture, food biosecurity, epidemiology) and have a choice of electives.

In third (final) year, you will master current techniques (gene transfer, microarrays, real-time DNA analysis), apply them to particular problems in human and animal health (detection of pathogens, vaccines, breeding), crops (drought and disease resistance) and microbes (fermentation) and study the regulatory requirements of biotechnology.

In the final year project you will work individually or in a team on a problem that is solved by searching the literature, designing experiments and carrying them out as if at work, or you may choose to undertake supervised work experience in research laboratories or external workplaces.

You will have access to 24/7 computing facilities, course materials, and contact with lecturers via email. Courses are taught in small groups in modern purpose-built laboratories (all new since 2001).

Honours

An honours year is available.

Career outlook

Graduates are currently employed in research, diagnosis and technique development in public institutions (CSIRO, AQIS, Police Forensics, research institutes for human, animal and crop health, biosecurity, universities, hospitals) and in private industry (fermentation, food, biotechnology, cell products, vaccines, e.g. CSL). With more industry experience, graduates have become statewide and national leaders and have been involved in exciting projects such as the sequencing of the human genome. The range of graduate occupations is wide, precisely because of the broad training that allows great flexibility. Graduates have become team leaders, have started their own companies and have contributed widely to novel technologies to solve real-world problems.

Professional recognition

Depending on streams chosen in third year, this degree may qualify graduates for professional membership of scientific societies such as the Australian Institute of Biology, the Australian Society for Microbiology, the Australian Biochemical Society, etc. The degree is internationally recognised and many RMIT graduates are employed overseas.

Global connections

Students may undertake a semester of study in an overseas university that is credited to their degree, in countries of the EU or America, through Study Abroad, e.g. Oxford Brookes University, UK.

Prerequisite

Units 3 and 4—one of mathematical methods (CAS) or specialist mathematics, and a study score of at least 30 in English (ESL) or at least 25 in any other English.

Extra requirements

Non-Year 12 applicants must complete and submit a VTAC Pi form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

Pathway

Depending on the stream chosen, graduates of the Associate Degree in Applied Science who achieve a grade point average (GPA) of 2.0 or greater will be able to claim credit and are guaranteed entry into the the Bachelor of Science (Biotechnology).

Graduates with a GPA of less than 2.0 may apply, and if successful in gaining a place, may be eligible for exemptions.

Graduates of the following programs may also be eligible to apply for exemptions:

» Diploma of Laboratory Technology (Biotechnology)
» Diploma of Laboratory Technology (Pathology Testing)

You may also be interested in...

» Applied sciences (page 22)
» Chemical engineering/biotechnology (page 5)
BIOTECHNOLOGY SCIENCES

Well-equipped labs and small class sizes ensure students gain copious amounts of hands-on experience.

BIOTECHNOLOGY

C5282 Diploma of Laboratory Technology (Biotechnology)

Duration: FT2—
2011 ATAR: 44.75
www.rmit.edu.au/programs/c5282

The Diploma of Laboratory Technology (Biotechnology) will give you a broad base of scientific knowledge with specialist molecular biology skills, along with the practical skills to work as a technician in the biotechnology industry. The program will also prepare you for further study in a range of related degrees. Biotechnologists use knowledge of living systems to develop ways to solve important practical problems—from controlling disease to making the environment safer. You will provide technical support to scientists working in a range of areas including research; production and testing positions in government and commercial laboratories; and in the field.

Classes are held in small groups of up to 30 students to maximise the interaction between students and staff. Teachers have extensive industry experience and expertise and maintain close links with the biotechnology industry. RMIT has been recognised by the biotechnology industry as providing quality training for people wishing to pursue a career in this field.

Working with industry

You will undertake 20 days of work placement during the second year. Placements are organised by RMIT. Placements give you a greater insight into the industry and allow you to further develop your laboratory skills in an area that also requires teamwork, attention to quality control and working to timelines. You may be placed in a variety of laboratories, ranging from small research laboratories to large biotechnology companies.

What you will study

Year one

The first year of the program provides a foundation in biochemistry, biology, chemistry, computing, mathematics, occupational health and safety and scientific communication. You also learn general laboratory skills, such as microscopy, aseptic techniques, chemistry techniques and the use of laboratory instruments. You also develop relevant practical skills such as how to detect and isolate a specific gene from a biological sample with the aim of identification.

Year two

The second year builds knowledge and skills in specialised biotechnology areas such as molecular biology, tissue culture, genetics, chromatography and electrophoresis, as well as quality assurance. You will develop molecular biology techniques as well as gain a strong foundation in molecular genetics and specialised biochemical procedures.

For example you will extract DNA from common kitchen ingredients as well as from bacteria and other cells. This will then be amplified using a technique known as PCR, separated using electrophoresis techniques, stained and examined.

Career outlook

Graduates will be qualified to work as technicians in biotechnology laboratories and provide technical support for scientists working in areas such as medical research, vaccine production, agriculture, diagnostic screening, commercial plant propagation and food microbiology.

Professional recognition

Students are eligible for student membership of the Australian Society for Microbiology and upon graduation are eligible for Associate membership. Students are also eligible for student membership of AusBiotech, the industry body representing the biotechnology industry in Australia.

Prerequisite

There are no prerequisite studies.

Extra requirements

Non-Year 12 applicants must complete and submit a VTAC Pi form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

Pathway

Graduates, who are successful in gaining a place, may apply for exemptions from the following degrees:

» Bachelor of Biomedical Science
» Bachelor of Science (Biotechnology)
» Bachelor of Applied Science (Laboratory Medicine)
» Bachelor of Biomedical Science (Pharmaceutical Science)

You may also be interested in…

» Applied sciences (page 22)
» Biotechnology (page 3)
CHEMICAL ENGINEERING/BIO TECHNOLOGY

BP159 Bachelor of Engineering (Chemical Engineering)/Bachelor of Science (Biotechnology)

Duration: FT5—V

Year one is conducted on the City campus and years two to five are shared between the City and Bundoora campuses.

2011 ATAR: 76.25

www.rmit.edu.au/programs/bp159

Why double-up

The double degree program at RMIT covers the application of chemical engineering and biotechnology methodologies and technologies for better management of the environment; preventing, diagnosing and curing disease; improving crop plants and livestock; detecting pollutants and contaminants; and using organisms to produce chemicals, including drugs and food, and agrichemicals.

Working with industry

There are opportunities for you to spend a week in a process industry in third year and learn about the roles of chemical engineers. Twelve weeks professional engineering work experience is a recommendation, usually between fourth and fifth years. Work experience gives you the chance to polish workplace skills and evaluate the kind of industry and employer you would like to work for. Work experience is a great motivator for success and RMIT students have worked for organisations such as Basell, BP, Cadbury, Cryovac, CSL, CUB, ExxonMobil, Kraft, Moldflow and Rio Tinto.

What you will study

The program builds on the basic sciences of chemistry and mathematics studied in Year 12, and goes on to cover chemical, physical and biological sciences and technology. It introduces microbiology, immunology and genetics, as well as fluid flow, particle mechanics, heat and mass transfer, process thermodynamics, and sustainable engineering. Cell and tissue culture and molecular biology are also included at third year, together with engineering process principles.

You will develop knowledge in the fundamentals of chemical engineering and biotechnology as well as developing generic skills such as team building. Project work is a feature of each year.

Career outlook

Chemical engineering is a truly international career. The RMIT degree is recognised around the world, and many Australian companies provide the opportunity for engineers to travel. A chemical engineering graduate can work in a variety of areas, from process and project engineering to marketing or research.

Graduates from this program are employed in research; production and testing; positions in government and commercial laboratories; and in industry. Graduates from the program are currently employed by government departments (local, state and Commonwealth), CSIRO, medical research institutes, hospitals, universities, secondary teaching, and private industry such as CSL Ltd and other employers.

Options include forensics and food processing, and with experience or further qualification graduates are employed at higher levels of responsibility.

Professional recognition

Graduates qualify for professional membership of scientific societies such as the Australian Institute of Biology, the Australian Society for Microbiology, and the Australian Biochemical Society. Graduates are also eligible for graduate membership of Engineers Australia and the Institution of Chemical Engineers (IChemE), UK. IChemE is the primary international professional society for the Chemical Engineer. The double degree is accredited by IChemE (UK) at the MEng Level.

Global connections

You can spend one or two semesters in universities in Canada, USA, Mexico, Denmark, Germany, Sweden, China and Korea. You can also undertake industry work experience with some of the world’s leading companies in Europe.

Prerequisite

Units 3 and 4—chemistry and one of mathematical methods (CAS) or specialist mathematics and a study score of at least 30 in English (ESL) or at least 25 in any other English.

Extra requirements

Non-Year 12 applicants must complete and submit a VTAC Pi form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

You may also be interested in...

» Applied chemistry/chemical engineering (page 6)

» Biotechnology (page 3)

» Food technology and nutrition/chemical engineering (page 11)

See the engineering brochure for more information on:

» Chemical engineering

» Chemical engineering/management
This program combines the studies in applied chemistry and chemical engineering and gives you the skills to help you deliver processes that could change the world.

The program includes in-depth studies in chemistry and analytical science, along with the full range of chemical engineering courses that will put you at the forefront of developing new and established technologies.

Why double-up?
As a graduate with a multidisciplinary qualification, you will be highly employable as you will have a better understanding of the requirements of team members from both specialties. You will interact with a wide range of relevant industries and broaden your career prospects.

Working with industry
Many courses are designed in collaboration with industry partners and people working in the industry are often invited to talk about their jobs and the opportunities available to you. Industry field trips will allow you to see first-hand how the industry works.

You may also complete 12 weeks of professional engineering work experience, giving you the opportunity to put what you have learnt into practice and discover the career you would like to pursue when you graduate.

Final year projects will give you the opportunity to work on industry-based problems. In addition, selected students travel to the Alcoa mines and refineries in Western Australia to see large-scale mineral extraction and processing.

What you will study

Year one
You will be introduced to the fundamentals of chemical engineering design, combined with chemistry theory and laboratory skills. Sustainable engineering is also introduced.

Year two
An example of courses studied include:
» Analytical spectroscopy
» Biochemical engineering
» Fluid flow and particle mechanics
» Heat and mass transfer
» Instrumental and environmental analysis
» Mathematics for engineers
» Process thermodynamics
» Reaction engineering.

Year three
You will select your chemical engineering specialisation:
» Chemistry theory and laboratory
» Process control and simulation
» Process principles.

Year four
An example of courses studied include:
» Advanced instrumental analysis
» Engineering experimental investigation
» Environmental and hazard analysis
» Process plant design and economics.

Year five
The focus in your final year is on your design and research projects, which will depend on your specific area of interest. These projects give you the edge in a wide range of industry roles.

Career outlook
As a graduate of a multidisciplinary qualification, you will be highly employable. Graduates are employed in a range of chemical industries in Australia, typically in the areas of oil and gas, food, biotechnology, pharmaceuticals, agricultural chemicals and polymers. In the process design sector, RMIT graduates typically work on developing production processes from the lab to large-scale. You will be well placed to take leading roles in the development and commercialisation of new chemical products.

Professional recognition
This double degree is recognised by the Royal Australian Chemical Institute, the Institute of Engineers (Australia) and the Institution of Chemical Engineers (IChemE), UK.

Global connections
You may take one or more semesters at an overseas institution through the RMIT Education Abroad program at more than 120 partner universities.

Prerequisite
Units 3 and 4—chemistry and one of mathematical methods (CAS) or specialist mathematics, and a study score of at least 30 in English (ESL) or at least 25 in any other English.

Extra requirements
Non-Year 12 applicants must complete and submit a VTAC Pi form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

You may also be interested in...
» Applied chemistry/management (page 7)
» Chemical engineering/biotechnology (page 5)
» Food technology and nutrition/chemical engineering (page 11)

See the engineering brochure for more information on:
» Chemical engineering/management

See the environment and planning brochure for more information on:
» Environmental science/management
APPLIED CHEMISTRY/MANAGEMENT

BP160 Bachelor of Science (Applied Chemistry)/Bachelor of Business (Management)

Duration: FT4—V X
2011 ATAR: N/A
www.rmit.edu.au/programs/bp160

CITY CAMPUS

This program combines studies in chemistry and business management. It is designed to enable graduates to fulfill their changing roles in the workplace as they progress through their careers from working in the laboratory or in industry before moving into management roles.

Graduates of the program will be knowledgeable in the fields of chemistry and management and able to work in both scientific and management roles.

Why double-up?

Most of the key roles in chemical industries and in chemical-related government bodies are held by chemistry graduates. You will have the chemistry skills needed to be a practising scientist and the business skills to be an effective manager and leader—a highly attractive combination for employers.

You will be on top of the policy and regulations relevant to your industry and be able to develop strategies, plan resources and make new ideas commercially viable.

Working with industry

RMIT believes it is important to put what you learn into practice. The final year projects will give you the opportunity to work on industry-based problems, and work placements are available within the management stream.

Laboratory experiments are also carried out in all four years of the degree.

In addition, selected students in their third year travel to the Alcoa mines and refineries in Western Australia to see large-scale mineral extraction and processing.

What you will study

In each year, you will study both science and management courses. Science electives enable you to specialise in areas such as medicinal chemistry, environmental chemistry or food chemistry. Management electives enable you to specialise in areas such as accounting, employee relations and international management.

In the fourth year, you will undertake a major laboratory-based project that gives you the opportunity to create products and investigate real-world problems.

Career outlook

A double degree broadens your career options and gives you a competitive edge.

Graduates are employed in a range of chemical industries in Australia and you will be qualified to work in commercial development and product testing, particularly in the areas of manufactured goods, medical drugs, and natural products. Graduates often find work in cosmetics companies or in the food industry.

Employment in the defense services, mining and energy industries are also common. Graduates may also find work in policy, research, public relations and marketing roles in scientific consultancies, government departments and commercial laboratories.

Professional recognition

This double degree is recognised by the Royal Australian Chemical Institute and the Australian Institute of Management.

Global connections

You may take one or more semesters at an overseas institution through the Education Abroad program at more than 120 partner universities.

Prerequisite

Units 3 and 4—chemistry and one of mathematical methods (CAS) or specialist mathematics, and a study score of at least 30 in English (ESL) or at least 25 in any other English.

Extra requirements

Non-Year 12 applicants must complete and submit a VTAC Pi form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

You may also be interested in…

» Applied chemistry/chemical engineering (page 6)
» Applied sciences (page 22)
» Nanotechnology/applied sciences (page 18)

See the environment and planning brochure for more information on:

» Environmental science/management
The Diploma of Food Science and Technology gives you the knowledge, skills and experience required to work in the food manufacturing industry. I chose RMIT because it has very practical work related courses, a convenient location and a friendly environment. Also, the courses were fun and interesting.

I have gained a good understanding of the food industry as well as skills and experience through work placement. The course I enjoyed most was sensory analysis of food, where we learnt to organise and conduct food analysis tests. We also got the opportunity to taste many foods! I am continuing my studies with the food science and technology degree in the food technology stream.

I hope to work in the food innovation field, using developments in food science to help reduce poverty and hunger.

Ruvini Sahabandu
Diploma of Food Science and Technology
FOOD SCIENCE AND TECHNOLOGY

C5184 Diploma of Food Science and Technology
Duration: FT2 or PT4—X
2011 ATAR: 35.45
www.rmit.edu.au/programs/c5184

CITY CAMPUS

Food technologists can undertake a range of roles including testing food products for quality and safety, product development, and overseeing food production and quality assurance. As an example, they may check the quality and consistency of fresh fruit juices.

The Diploma of Food Science and Technology will give you the highly developed practical skills in science and food handling needed to work in the food industry or prepare you for further study in a range of related degrees.

RMIT’s food technology laboratories have a wide range of industry standard equipment for the production, testing and packaging of food products. RMIT is the only institution offering the full range of food technology courses, providing training for many different industries.

You will learn in small groups of up to 30 students to provide you with maximum opportunity for interaction with staff. The teachers are experienced industry professionals and their skills are supplemented by visiting specialist speakers and industry visits.

Working with industry

You will undertake 20 days of work placement during the second year of the program. This provides you with the opportunity to gain a greater understanding of the industry and to further develop your skills in an area that also requires teamwork, attention to quality control and working to timelines.

What you will study

Year one

The first year provides you with broad knowledge and training in general laboratory and food technology skills. Courses include chemistry, food analysis, introduction to food technology, food microbiology, packaging, quality management, and occupational health and safety.

You will learn a range of analytical techniques for testing food as well as the production of a range of food products such as cheese, ice cream, meat and fish products, dried fruit and vegetables. Also included is the study of the sensory evaluation of food and introduction to nutrition and diet and methods of food preservation.

Year two

Second year builds on these basic skills as well as more detailed study of nutrition and biochemistry of food.

Another set of food production courses will cover the manufacturing of products including margarine, beer and cereal products. You will learn to use equipment for grinding seeds and grains, extracting oils, canning, dehydration, smoking and packaging foodstuffs.

Other courses include nutrition, food testing, food additives and food safety. Legislation, reporting and career planning are also included.

There is an emphasis on gaining practical skills used in the food industry.

Career outlook

Food manufacturing is one of the largest manufacturing sectors in Victoria and is always looking for suitably trained and qualified technical staff.

Professional recognition

Students are eligible for student membership of the Australian Institute of Food Science and Technology and on graduation, eligible for associate membership.

Prerequisite

There are no prerequisite studies.

Extra requirements

All applicants must complete and submit a VTAC Pi form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

Pathway

Graduates, who are successful in gaining a place, may apply for exemptions from the following degree:

» Bachelor of Science (Food Technology and Nutrition)

You may also be interested in...

» Applied sciences (page 22)
» Biotechnology (page 3)
» Food technology and nutrition (page 10)
The food technology and nutrition program is about the science of large-scale food manufacturing and making it safe and nutritious to meet consumers’ needs. This program offers you the opportunity to learn the application of science in a socially responsible way and the skills required to develop goods and services for the marketplace to meet those needs.

This program prepares you for work in a broad range of roles in the food industry. You are trained in the full range of theoretical and practical aspects of food science and technology, and nutrition. You will be able to develop novel, healthy and functional food products that meet consumer demands and comply with government and industry’s strict safety and health guidelines.

RMIT prioritises practical learning environments. This program is unique in helping you develop practical hands-on skills in a pilot plant setting that simulates industrial production. All courses in this program have face-to-face interaction as well as online teaching and learning facilities that make your learning flexible and student centred.

Working with industry

The third year science project may be linked to an industry with typical projects including working in the Research and Development department to design new processes or formulate new food products; or being involved in a labeling project that promotes a product’s nutritional profile.

The quality assurance course is conducted with direct involvement of the food industry where projects are designed and assessed by representatives of the industry.

What you will study

During the first year, all students share basic science courses such as chemistry, biology and mathematics, as well as core courses in an introduction to the food industry, food preservation and nutrition.

Streaming into major areas begins from the fourth semester.

In the food technology stream, you learn to turn raw materials such as milk and cereal grains into food products such as ice-cream and breakfast cereals.

The nutrition stream helps you learn to improve the nutritional quality of our manufactured food supply, creating safe and nutritious foods that taste good and have a balanced nutritional profile.

In the second and third years of the program you will be developing several different products in a pilot plant setting and undertaking several industry visits.

Honours

An honours year is available.

Career outlook

Graduates of the food technology stream find jobs in large food processing companies such as Nestlé, Cadbury, Simplot, Heinz and Kraft in research and development, marketing or quality assurance roles. Graduates of the nutrition stream generally work in food companies in areas of product development, marketing and regulatory affairs, or complete further study.

Many past graduates have progressed to managerial roles in food companies, while some have taken up roles in government departments or regulatory bodies and others have worked in international food companies and many rural and Melbourne-centered smaller food companies or have started their own private businesses.

There is also scope for nutrition stream students to select electives that will allow them to articulate into dietetics or diploma of education programs elsewhere.

Professional recognition

Graduates of both streams are eligible for Australian Institute of Food Science and Technology (AIFST) membership and nutrition stream graduates may also be eligible to apply for registration as a nutritionist with the Nutrition Society of Australia.

Global connections

You may take one or more semesters at an overseas institution through the Education Abroad program at more than 120 partner universities.

Recent graduates have spent a semester or two in food science and technology programs in England, Germany and other European countries.

Prerequisite

Units 3 and 4—mathematics (any) and a study score of at least 30 in English (ESL) or at least 25 in any other English.

Extra requirements

All applicants must complete and submit a VTAC Pi form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

Pathway

Depending on the stream chosen, graduates of the Associate Degree in Applied Science who achieve a grade point average (GPA) of 2.0 or greater will be able to claim credit and are guaranteed entry into the Bachelor of Science (Food Technology and Nutrition).

Graduates with a GPA of less than 2.0 may apply, and if successful in gaining a place, may be eligible for exemptions.

Graduates of the following program may also be eligible to apply for exemptions:

» Diploma of Food Science and Technology

You may also be interested in…

» Applied sciences (page 22)

» Food technology and nutrition/chemical engineering (page 11)
FOOD TECHNOLOGY AND NUTRITION/ CHEMICAL ENGINEERING

BP236 Bachelor of Science (Food Technology and Nutrition)/Bachelor of Engineering (Chemical Engineering)

Duration:
2011 ATAR: N/A

www.rmit.edu.au/programs/bp236

CITY CAMPUS

A double degree in food technology and nutrition and chemical engineering is a unique program offered by RMIT that opens up a world of possibilities. You will learn how to design the plant, the process and the product. As a food industry professional, you will have the advantage of both food science and engineering skills, giving you an edge in developing competitive products. This degree is ideal if you are interested in:

- developing new products, design processes and packaging
- a broader range of roles in the food processing industry
- making food processing industries work more efficiently.

Why double-up?

This program allows you to complete two awards in a reduced amount of time and increases your employment prospects. You will interact with a wide range of relevant industries and broaden your career prospects.

Working with industry

RMIT prioritises practical learning environments. Throughout the program you will undertake several industry visits to learn about production processes. Twelve weeks professional engineering work experience is recommended and usually undertaken between years four and five. This will give you the opportunity to put what you have learnt into practice and network with industry. Industry-based design or science projects are also a feature. In the final year you will undertake two major projects which are designed to put you in direct contact with the industry and industry-related problems such as equipment performance problems or production efficiency and output.

What you will study

This degree provides you with in-depth studies of selected food science and chemical engineering courses. The first year of the double degree develops your skills in chemistry, mathematics and fundamentals of chemical engineering. The second year develops your knowledge on core chemical engineering and food science courses. The third year further develops your knowledge in food science, and process design and control skills. The fourth year develops your skills in environmental, safety, and economic analysis of processes and design of process plant. The final year of the program helps you to consolidate your chemical engineering and food science skills and apply them in major process design and science projects.

A design project and a science project will be the focus of your final year. These projects will give you important practice skills and the competitive edge in a wide range of industry roles.

Career outlook

Double degree graduates with multidisciplinary qualifications are highly employable as professionals who have a better understanding of the requirements of other team members. Industry recognises this, and statistics show that 90-100% of RMIT double degree graduates have found jobs in the first few months after completing their double degree.

Food processing is Victoria’s largest manufacturing industry and offers excellent employment opportunities for food and chemical engineers. RMIT graduates typically find employment in large food processing companies such as Nestlé, Cadbury, Simplot or Kraft. Many work in research and development; others move into marketing or quality assurance. Graduates have also secured managerial roles.

Professional recognition

Graduates are eligible for membership of the Australian Institute of Food Science and Technology (AIFST).

The Bachelor of Engineering (Chemical Engineering) degree is accredited by Engineers Australia and graduates are eligible to apply for graduate membership.

www.engineeraustralia.org.au

The Institution of Chemical Engineers (IChemE), based in London, is the primary international professional society for the chemical engineer. All RMIT chemical engineering degrees fully satisfy the (UK) requirement for accreditation at the MEng level.

www.icheme.org

Global connections

RMIT offers student exchange scholarships for student exchange programs with USA and Canada. Many students also spend a semester or two in food science and technology programs in England, Germany and other European countries.

Prerequisite

Units 3 and 4—chemistry and mathematical methods (CAS) and a study score of at least 29 in English (ESL) or at least 25 in any other English.

Extra requirements

Non-Year 12 applicants must complete and submit a VTAC PI form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

You may also be interested in...

- Applied chemistry/chemical engineering (page 6)
- Chemical engineering/biotechnology (page 5)
- Food technology and nutrition (page 10)
'I was attracted to geomatics because of its conjunction between art and science. It brings together many different and unique fields such as mapping, GIS, surveying, GPS, satellite imagery, aerial photography and geography.

'The specialised knowledge gained from this combination of core areas creates a modern niche degree that really appealed to me.

'RMIT offered one of the few geomatics degrees in Melbourne and is located in the heart of the CBD, which is great geographically and helpful for networking.

'The degree is both knowledgeable and hands-on. You are given practical exercises, tutorials, field days and camping trips in real situations.

'The highlight of my studies was my final year project in which I surveyed, investigated and designed a 3D spatial model of cycling effort in a suburban park.

'My work was awarded the best final year project, which was a surprising and welcome reward for the hard work involved.

'The geomatics degree has made me very aware of location, geography and where things are. Geography is now second nature in everything I do, even outside of work and study. Maps are extremely useful sources of information and I rarely get lost!

'I currently work as a geospatial analyst for a ground engineering firm. I am also back at RMIT doing my PhD in land information. Over the next couple of years I plan to finish my studies while working and maybe sneaking in a trip to Canada for some snowboarding.

'My dream job would involve using high-end mapping technologies that would lead me across the globe.'

Anthony Wilson
Bachelor of Applied Science (Geomatics) *

* This degree has been renamed Bachelor of Science (Geospatial Science).
GEOSPATIAL SCIENCE

BP087 Bachelor of Science (Geospatial Science)
Duration: FT4 or PTA—
2011 ATAR: 66.65
www.rmit.edu.au/programs/bp087

CITY CAMPUS

This program develops professionals to work in geospatial science, which is all about location. If we understand where things are and how they are connected, we better understand our world. Geospatial scientists use location as the key to collecting, managing, analysing and interpreting information.

Teaching at RMIT is built on a strong link between theory and practice. While there is a sound theoretical base, most courses incorporate extensive practical work to build skills as well as knowledge.

Geospatial science is a specialised discipline, so you enjoy the advantage of small class sizes, focused content and staff who are easily accessible. RMIT maintains strong links with industry and members of the profession regularly participate in our teaching programs. While you will find elements of geospatial science in other programs, RMIT offers the only four-year undergraduate degree in Victoria. There is also a dedicated field station at Yarra Bend Park to support practical work.

Learning support for students includes a first year transition program, academic coordinators for each year level and a strong Geospatial Science Student Association.

Working with industry

Many RMIT activities are guided by industry. For example, you will undertake an exercise based on the Yarra Bend Park Strategy Plan. You will survey an area of the park, then model, design and illustrate an amphitheatre to suit the local environment.

You are also expected to complete 60 days work experience during your program. This is usually in the form of paid employment during vacation periods or as a part-time employee. You may receive assistance in finding a placement.

What you will study

In the early years of the program, you will study the fundamentals of measurement science, cartography and spatial information science (GIS). Other fundamental skills in mathematics, statistics and physics are also covered.

In later years, more specialised studies are offered in geodesy, map projections, spatial analysis, web design, remote sensing, image analysis and professional practice. Elective choices give you the opportunity to develop further skills in these areas or to learn more about information technology, environmental studies, planning and land administration.

From first year, you will engage in project based learning, tackling real-world problems and designing solutions using geospatial tools. This continues in other years, and you will design and undertake a substantial major project in your final year.

Practical work is based on industry standard software and hardware, the same tools you will find in the workplace. You will have ample opportunities to develop skills and experience with these tools.

Career outlook

Graduates work in diverse roles and can be found managing and planning land use systems in local government; mapping and analysing crime patterns with the police; building systems for monitoring the spread of infectious diseases; and providing maps and other data for mobile phones. More and more organisations are relying on spatial data as a key information source. As a result, there is strong industry demand for graduates and they can work in any organisation where spatial information is used (see www.spatialjobs.com.au). Over 90% of our graduates are typically employed within three months of completing their studies.

Professional recognition

Graduates from this program are eligible for admission to the Surveying and Spatial Sciences Institute. They also meet the requirements to be members of the Mapping Sciences Institute of Australia.

www.mappingscience.org.au
www.spatialsciences.org.au

Global connections

Opportunities exist to go on exchange with universities in Stockholm, Sweden and Vienna, Austria.

Prerequisite

Units 3 and 4—mathematics (any), and a study score of at least 30 in English (ESL) or at least 25 in any other English.

Extra requirements

Non-Year 12 applicants must complete and submit a VTAC PI form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

Pathway

RMIT graduates of the following program may be eligible to apply for exemptions:

» Advanced Diploma of Spatial Information Services

You may also be interested in...

» Surveying (page 14)

See the engineering brochure for more information on:

» Civil engineering

See the environment and planning brochure for more information on:

» Environmental science

» Urban and regional planning
SURVEYING

BP089 Bachelor of Applied Science (Surveying)

Duration: FT4 or PTA—
2011 ATAR: 75.75
www.rmit.edu.au/programs/bp089

CITY CAMPUS

Surveyors are masters of measurement, whether it is to locate a property boundary or set out a high-rise building. Today’s surveyors use advanced equipment and specialised software to determine the accurate position of features on the Earth. They also design subdivisions, measure the ocean floor and monitor deformation of the Earth’s crust. It requires attention to detail and a precise mind.

The degree is built on a strong link between theory and practice. While there is a sound theoretical base, most subjects incorporate extensive practical work to build skills as well as knowledge.

Surveying is a specialised discipline, so you enjoy the advantage of small class sizes, focused content and staff who are easily accessible. RMIT maintains strong links with industry and members of the profession regularly participate in our teaching programs. RMIT offers the only undergraduate degree in surveying in Victoria. There is also a dedicated field station at Yarra Bend Park to support practical work.

Learning support for students includes a first year transition program, academic coordinators for each year level and a strong Geospatial Science Student Association.

Working with industry

Many RMIT activities are guided by industry. For example, you will undertake an exercise based on the Yarra Bend Park Strategy Plan. You will survey an area of the park, then model, design and illustrate an amphitheatre to suit the local environment.

You are also expected to complete 60 days work experience during your program. This is usually in the form of paid employment during vacation periods or as a part-time employee. You may receive assistance in finding a placement.

What you will study

In the early years of the program, you will study the fundamentals of measurement science, cartography and spatial information science (GIS). Other fundamental skills in mathematics, statistics and physics are also covered.

In later years, more specialised studies are offered in geodesy, map projections, spatial analysis, remote sensing, image analysis and professional practice. Specialised studies in cadastral and engineering surveying, GPS and advanced adjustment methods are central components of the program.

Field camps are held in years two and three to reinforce the theoretical learning and allow you to exercise your knowledge on real-world problems.

Practical work is based on industry standard software and hardware, the same tools you will find in the workplace. You will have ample opportunities to develop skills and experience with these tools.

Career outlook

Graduates are typically employed in small and medium sized consultancy businesses, in the mining sector and in government agencies. Graduate employment has approached 100% for the past few years and there is a continuing shortage of suitably qualified surveyors.

Many graduates enter a Professional Training Agreement and become Licensed Surveyors. For more information visit:
www.surveying.org.au
www.alifewithoutlimits.com.au
www.surveyorsboard.vic.gov.au
www.spatialsciences.org.au

Professional recognition

The Bachelor of Applied Science (Surveying) is accredited by the Surveyors Board of Victoria. Graduates are eligible to apply for membership of the Institution of Surveyors Victoria and the Surveying and Spatial Sciences Institute.

The program has international accreditation with the Royal Institute of Chartered Surveyors.

Global connections

Students can study for one or more semesters at an overseas institution through the Education Abroad program at more than 120 partner universities.

Prerequisite

Units 3 and 4—one of mathematical methods (CAS) or specialist mathematics and a study score of at least 30 in English (ESL) or at least 25 in any other English.

Extra requirements

Non-Year 12 applicants must complete and submit a VTAC Pi form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

Pathway

RMIT graduates of the following program may be eligible to apply for exemptions of up to two years:
» Advanced Diploma of Spatial Information Services

You may also be interested in...

» Geospatial science (page 13)

See the engineering brochure for more information on:
» Civil engineering
Mathematics

BP083 Bachelor of Science (Mathematics)
Duration: FT3 or PTA—V X
2011 ATAR: 74.10
www.rmit.edu.au/programs/bp083

City Campus

Mathematics teaches you to think logically and approach problems in analytical and creative ways.

Mathematicians apply their problem-solving skills to problems in a wide variety of fields, including banking and finance, environmental modelling (resources, biodiversity, weather and climate), information security (coding, cryptography) and engineering (fluid mechanics, optimising industrial processes).

This degree focuses on applying maths to real-world problems to enhance the programs employment focus. Theory is linked to practical projects and applied to real scenarios. You will make practical use of industry-relevant computer software packages.

RMIT differs from many universities in that you are enrolled in a mathematics degree from day one, as opposed to a generalist science degree. You will be well supported by a peer-mentoring system, and many of our final-year students get a head start in the job market by doing an industry placement.

This degree is ideal if you are interested in:
» using numbers and formulas to solve problems
» finding logical and creative solutions
» advanced numerical skills that will set you apart from graduates in business or commerce.

Working with industry
During the third year you will undertake a project that is linked directly to industry and many students go on to future employment with the organisations that they work for.

In recent years students have worked on industry projects from, or been placed in, diverse organisations such as VicRoads, Victorian Institute of Sport (Melbourne Vixens), Badminton Australia, Bureau of Meteorology, Australian Bureau of Statistics, National Australia Bank, Dairy Innovation Australia, National Stroke Research Institute, Australian Institute of Sport (Australian Hockey Team) and Biarri Commercial Mathematics, to name just a few.

What you will study
You will undertake core studies in applied mathematics, together with several courses from one of four specialisations:
» environmental modelling
» finance
» information security
» statistics

In first year, you will study the basics of calculus, statistics, discrete mathematics, mathematical programming and professional practice.

In second and third year, you will continue with more advanced applied mathematics courses involving mathematical modelling and computational methods, together with the fundamental mathematical techniques needed by the professional mathematician. It is at this stage that you undertake your choice of specialisation.

At each year level, you will study a work integrated learning course which typically involves (team) work on a real-world industry problem.

Honours
An honours year is available.

Career outlook
The outlook for mathematics graduates is excellent. Mathematics graduates work as analysts and modellers in many areas of business, commerce, government, teaching, computer and manufacturing industries.

Mathematics has been identified as a critical area in science and the government has forecast that the demand for mathematicians will grow by 3.5% each year from 2006–2013. CSIRO and other agencies have reported difficulties in filling mathematics positions. The statistics indicate that as a mathematician you will be entering the workforce as a highly sought after employee.

Professional recognition
Graduates will be eligible to apply for graduate membership to the Australian Mathematical Society.

Global connections
You may take one or more semesters at an overseas institution through the Education Abroad program at more than 120 partner universities.

Prerequisite
Units 3 and 4—mathematical methods (CAS) or specialist mathematics and a study score of at least 30 in English (ESL) or at least 25 in any other English.

Extra requirements
All applicants must complete and submit a VTAC Pi form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

You may also be interested in…
» Statistics (page 17)
The Bachelor of Science (Mathematics) captured my interest when I saw that the degree combines theory with practical application. The program structure is very career-based, enabling you to become highly employable by exposing you to industry problems and helping you develop professional skills. The fact that the degree offers four areas of specialisation including information security, finance, environmental modelling and statistics was also appealing.

Previously I completed four years of mechanical engineering, but it was only when I started this degree that I felt passion in my studies. I have always loved maths but before, I thought that a career in mathematics was limited to teaching. But after a year of doing this degree, I realised that my skills in mathematics and statistics can actually be applied to a lot of areas including marine biology, meteorology, biomedicine, business and lots more.

In my first year, I really enjoyed doing mathematical computing, computational mathematics and mathematics and statistics in industry. Mathematical computing taught me how to use MATLAB to produce simulations for solving mathematical and physical problems. I learnt different numerical methods and approximations of functions and data in computational mathematics. Mathematics and statistics in industry gave me the opportunity to work with an industry project from VicRoads which requires data cleaning and data analysis.

After graduation, I hope to combine work with further study, possibly a Master in Information Security.

I want to be a software developer, or an information security analyst. I would also like to work with a financial institution or in the biomedical industry. The application of mathematics is so diverse that you have a lot of fields to choose from after graduation.

Michelle Mae Roldan
Bachelor of Science (Mathematics)
What you will study
You will undertake core studies in applied statistics, together with several courses from one of three specialisations:
» environmental modelling
» finance
» marketing
In first year, you will study the basics of calculus, statistics, discrete mathematics, mathematical programming and professional practice.
In second and third year, you will learn about the mathematical foundations of statistics together with the numerous areas of application (quality control, experimental design, sampling theory, analysis of multivariate data, regression analysis, forecasting and time series, sports statistics). It is at this stage of your applied statistics studies that you choose your specialisation.
At each year level, you will study a work-integrated learning course which typically involves (team) work on a real-life industry problem.

Career outlook
The world is awash with data, and RMIT statistics graduates are ideally placed to capitalise on this situation. A chronic undersupply of statistics graduates means that there has never been a better time to do a statistics degree. In fact, the Federal Government has forecast a 33% growth in demand for statisticians over the next three years.
Many RMIT graduates undertake careers in sports statistics at the AIS, or in the AFL. Other graduates work in the public service working for organisations such as ASIO, ABS, the Bureau of Meteorology and Australia Post, or in the banking and finance sector.

Professional recognition
Graduates are eligible to apply for graduate membership to the Statistical Society of Australia and graduate membership to the Australian Society for Operations Research.

Global connections
You may take one or more semesters at an overseas institution through the Education Abroad program at more than 120 partner universities.

Prerequisite
Units 3 and 4—one of mathematical methods (CAS) or specialist mathematics and a study score of at least 30 in English (ESL) or at least 25 in any other English.

Extra requirements
All applicants must complete and submit a VTAC Pi form, available online at www.vtac.edu.au, if they wish other information to be considered.
Please refer to the 2012 VTAC Guide for full details on extra requirements.

You may also be interested in…
» Mathematics (page 15)
See the business brochure for more information on:
» Economics and finance
» Marketing
See the environment and planning brochure for more information on:
» Environmental science
NANOTECHNOLOGY/ APPLIED SCIENCES

BP247 Bachelor of Science (Nanotechnology)/ Bachelor of Science (Applied Sciences)

Duration: FT4 or PT8 — V X
2011 ATAR: 76.45
www.rmit.edu.au/programs/bp247

CITY CAMPUS

The double degree in nanotechnology and applied science will provide you with a strong grounding in nanotechnology—the science and engineering of materials less than a micrometer in size—across the disciplines of physics and chemistry with substantial biology and engineering components. It provides you with the perfect opportunity to become part of this new and rapidly growing area of science.

Graduates of this double degree are skilled scientists who design and engineer materials, machines and systems capable of imaging and manipulating single molecules or atoms, together with materials that have useful, and surprising, properties at this size.

Graduates are valued for their broad knowledge, problem-solving abilities, and high level of experimental skill.

Why double-up?

RMIT’s four-year double degree reflects the multidisciplinary nature of the subject, combining majors in nanotechnology and either physics or chemistry.

The degree encompasses physical, chemical, biological and engineering nanoscience/ nanotechnology, with a strong emphasis on instrumental training and communication.

Working with industry

The science project and the professional scientist course will prepare you for work through a series of lectures on professional, legal, and social aspects of the workplace, and experience gained from short projects performed about or with a relevant industrial organisation.

What you will study

In the first year of study you will undertake chemistry, physics, biology, scientific skills, mathematics, and be introduced to the diverse area of nanotechnology.

In the second to fourth years of the program you will study courses in your science specialisation (chemistry or physics) together with:

» genetics and immunology
» instrument design
» mathematics
» microscopy
» modelling
» neutron science
» semiconductor fabrication
» sensor technology
» spectroscopy
» synchrotron
» x-ray and light scattering.

Career outlook

Nanotechnology graduates find research or industry-based careers in Australia and overseas.

People with skills and qualifications in nanotechnology will be in high demand. Graduate shortages have also been identified in the nano-enabling specialisations of: chemistry—particularly polymer, colloidal, organic and bio-inorganic chemistry; materials science and engineering; microelectronics fabrication; and meteorology.

Many graduates go on to higher study (master and/or PhD) in order to pursue a career in nanotechnology research. Others go on to work in a wide variety of industries.

Graduates are currently employed in telecommunications, computing, defense, solar energy, medicine, aerospace, paints and coatings, cosmetics, and environmental remediation.

Global connections

You may take one or more semesters at an overseas institution through the Education Abroad program at more than 120 partner universities.

Prerequisite

Units 3 and 4—one of chemistry or physics, and one of mathematical methods (CAS) or specialist mathematics, and a study score of at least 30 in English (ESL) or at least 25 in any other English.

Extra requirements

Non-Year 12 applicants must complete and submit a VTAC Pi form, available online at www.vtac.edu.au. If they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

You may also be interested in...

» Applied sciences (page 22)
PHYSICS/ELECTRONIC AND COMMUNICATION ENGINEERING

BP007 Bachelor of Science (Physics)/Bachelor of Engineering (Electronic and Communication Engineering)

Duration: FT5 or PTA—
2011 ATAR: N/A
www.rmit.edu.au/programs/bp007

CITY CAMPUS

Engineers design and implement products and services for people, business, industry, and governments. These products help to enrich people’s quality of life, improve profits, and enhance community health, safety and security. The combined double degree boosts problem-solving abilities by using the dual skills of scientific and engineering approaches. The program provides hands-on, practical experience through extensive laboratory studies and design projects.

Why double-up?
The Bachelor of Science (Physics)/Bachelor of Engineering (Electronic and Communication Engineering) program at RMIT is designed to produce physicists and engineers that have the potential to be leaders in their professions. Graduates of this double degree are keenly sought after by business, industry and government organisations.

Working with industry
In addition to the compulsory 12 weeks of work experience required, students will have the opportunity to complete industry-sponsored projects. Final year students can apply for summer research scholarships.

What you will study
The earlier years of this degree cover the fundamentals of electronic and communication engineering and develop basic teamwork and leadership skills. The physics courses cover scientific fundamentals and applications of natural phenomena. The later years include team and individual projects and advanced courses in a specialisation. These focus on consolidating teamwork, leadership, management, communication and professional skills.

Career outlook
Graduates of this double degree are keenly sought after due to their extensive range of knowledge and skills and their excellent problem-solving skills, which combine both scientific and engineering approaches. Graduates may be employed in:
» Industry to design and manufacture electronic, communication and scientific products.
» Business to implement and maintain electronic, communication and scientific systems and services.
» Education, research and development organisations to advance technologies.
» Government organisations to provide health, education, environment, transport, defense, trade, security and emergency services.

Professional recognition
The Bachelor of Engineering (Electronic and Communication Engineering) is accredited by Engineers Australia. Graduates are eligible to apply for graduate membership of Engineers Australia and are recognised as professional engineers in all member countries of the Washington Accord.
www.engineersaustralia.org.au
www.washingtonaccord.org

Global connections
RMIT encourages students to participate in Study Abroad and other centrally run opportunities. You also have the opportunity of undertaking an industry placement for one or two semesters either locally as advertised by local businesses, or internationally through the RMIT International Industry Experience and Research Program (RIIERP).
www.rmit.edu.au/riierp

Prerequisite
Units 3 and 4—one of mathematical methods (CAS) or specialist mathematics and physics and a study score of at least 30 in English (ESL) or at least 25 in any other English.

Extra requirements
All applicants must complete and submit a VTAC Pi form, available online at www.vtac.edu.au, if they wish other information to be considered. Please refer to the 2012 VTAC Guide for full details on extra requirements.

You may also be interested in…
» Applied sciences (page 22)

See the engineering brochure for more information on:
» Computer and network engineering
» Electrical engineering
» Electronic and communication engineering/computer science
» Electronic and electrical engineering

Legend: FT—Full-time (number of years); PT—Part-time (number of years); RC—A range of selection criteria applied; N/A—Not available; D—Degree program; T—TAFE program
See page 29 for application details: V—VTAC; R—RMIT Direct; S—RMIT School; X—Extra requirement
What you will study

Year one

The first year provides you with underpinning technical skills and knowledge in a broad range of applied sciences as well as scientific reading, writing and research skills. By the end of the first year you will be able to perform confidently in a biological, chemical or food laboratory.

Year two

The second year specialises more in your chosen stream, building on first year achievements. The food science students will manufacture, evaluate and test a variety of food products for quality and safety as well as studying human nutrition. The biomedical stream students will isolate, purify, amplify and characterise DNA and perform techniques such as chromatography and electrophoresis. You will also become competent at tissue and cell culture as it is applied in biotechnology and medical laboratories.

Career outlook

Depending on the stream you select, the associate degree offers you a qualification in either food science or biomedical science. The food science stream will equip you with the highly developed practical skills needed to work in the food industry, in particular food handling and processing. The biosciences stream is a broad-based training program for students who want a technical career in diagnostics, medical research, veterinary, biological research or biotechnology laboratories.

Professional recognition

Membership of professional bodies will be relevant to the stream selected. Biomedical science students are eligible for student membership of the Australian Society for Microbiology and the Australian Institute of Medical Laboratory Scientists and upon graduation are eligible for associate membership. Food science students are eligible for student membership of the Australian Institute of Food Science and Technology and upon graduation are eligible for associate membership.

Prerequisite

Units 3 and 4—mathematics (any) and a study score of at least 25 in English (ESL) or at least 20 in any other English.

Extra requirements

Non-Year 12 applicants must complete and submit a VTAC PI form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

Pathway

Depending on the stream chosen, graduates of the Associate Degree in Applied Science who achieve a grade point average (GPA) of 2.0 or greater will be able to claim credit and are guaranteed entry into the following degrees:

- Bachelor of Science (Applied Sciences)
- Bachelor of Science (Biotechnology)
- Bachelor of Science (Food Technology and Nutrition)

Depending on the stream chosen, graduates of the Associate Degree in Applied Science who achieve a grade point average (GPA) of 2.0 or greater are guaranteed entry into the second year (equivalent to 120 credit points) of the following degrees:

- Bachelor of Biomedical Science
- Bachelor of Biomedical Science (Laboratory Medicine)
- Bachelor of Biomedical Science (Pharmaceutical Sciences)

Graduates with a GPA of less than 2.0 may apply, and if successful in gaining a place, may be eligible for exemptions.

You may also be interested in...

- Applied sciences (page 22)
- Food science and nutrition (page 10)

See the health and medical sciences brochure for more information on:

- Biomedical science
- Laboratory medicine
The Bachelor of Science (Applied Sciences) degree at RMIT appealed to me because it gave me the flexibility to choose from a large range of interesting subjects, with core courses to ensure you have a well-rounded education.

It also gives you the opportunity to explore different areas of science before deciding what to major in. It is a really good option if you love science and want a degree which you can build yourself.

I chose RMIT because of its work integrated learning and a focus on students and their education. By gaining real experience, I know that when I set foot in a workplace, I will have a degree which is highly regarded in industry.

Next semester I am headed to Ryerson University, which is one of RMIT University’s exchange partners based in Toronto, Canada. I am really looking forward to studying and living overseas.

Through my degree I’ve gained confidence in the lab and have developed my scientific writing, which is one of the most useful skills a scientist can possess.

The small lectures, where you are given personal attention, have been a major highlight. The social life associated with life at uni adds a lot of fun, too.

I hope my degree will take me into a research career, developing treatments for life threatening diseases in the less developed world.

Tania Griffiths
Bachelor of Science (Applied Sciences)
APPLIED SCIENCES

BP229 Bachelor of Science (Applied Sciences)
BP229 Bachelor of Science (Applied Chemistry)
BP229 Bachelor of Science (Biological Sciences)
BP229 Bachelor of Science (Physics)

Duration: FT3 or PT6 — www.rmit.edu.au/programs/bp229

2011 ATAR: 57.15

CITY CAMPUS

The Bachelor of Science degree allows you to major in one of four fields: applied sciences, applied chemistry, biological sciences or physics.

In addition, students can major in environmental science, biotechnology and food science under the applied sciences general program plan.

This program is perfect for the student who wants flexibility in their studies. You can choose a plan from the start or make changes after you have sampled the common first year of the program. You can major in a variety of areas in science and take up to six courses that support additional depth in your chosen area, or supplement your studies through electives in other areas of science.

All disciplines in this program follow a common plan of seven core courses, eleven specialised courses that define a major, four science electives and two student electives.

The program offers a wide variety of learning experiences including laboratory and practical work, working in the field, formal lectures, and self-directed projects working with industry.

Working with industry

The specialist courses in third year ensure that graduates are well placed in the job market, and that they receive invaluable hands-on skills from practical sessions in all courses.

The final year science projects may be based around actual industry-related problems which will give you valuable insight into the type of roles and industries you choose to work in and help you to make important contacts with people working in the industry.

RMIT graduates are renowned for their real-life education and their hands-on skills, making them highly desirable to employers.

What you will study

The first year provides a solid foundation across the sciences and allows you to choose a speciality. You will also gain an understanding of the methodical scientific approach, individual and group work, communication skills and knowledge and understanding of the importance of safety in the scientific workplace.

The second year begins to add depth to your chosen area of study while introducing a wide selection of electives to expand your scientific knowledge. Here, you can choose a series of electives that can enhance your chosen discipline or add breadth to your overall studies in science.

The final year of the program adds depth to your area of specialisation while preparing you for work in the industry through special work-integrated learning courses such as the professional scientist and science project.

Throughout your studies, you have a unique opportunity of taking an elective in occupational health and safety (laboratory and fieldwork safety) which will allow you to gain credit towards a Certificate IV in Occupational Health and Safety (OH&S) upon completion of the degree. This additional qualification is seen by many employers as a valuable addition to your science degree.

Honours

An honours year is available in all of the major study areas of applied sciences, applied chemistry, biological sciences and physics.

In addition, you may be eligible for honours in biotechnology, environmental science and food science depending on your choice of courses.

Career outlook

RMIT graduates are successful both nationally and overseas. Many hold key positions in public and private industry, research organisations and government departments. The diversity of successful graduates reflects the breadth of the program. The following are a few examples from the key discipline areas of the program.

Graduates in the biological sciences have worked in nearly every area of biotechnology and biosciences—from gene manipulation in mammals to toxin testing in waterways and crop protection—for public and private employers all over the world.

Biological science covers the areas of ecology, ecotoxicology, marine biology and aquaculture, environmental biotechnology and molecular agriculture.

The biological sciences stream is unique in its topic areas and scope, offering wide flexibility and choice in your final area of employment.

Graduates in applied chemistry have an excellent basis to pursue a career in a number of vocational areas. Chemists are employed across several industries including manufacturing; professional, scientific and technical services; education and training; and electricity, gas, water and waste services.

Whether it is nanotechnology (miniaturisation), agriculture (food production), industrial chemistry (catalysis), trace element analysis (toxic residues), polymers (specialty composites) or new energy sources (solar cells), chemistry is at the forefront in providing a basis for understanding the nature of the materials we work with and then giving us the ability to take control of them.

Physics graduates will work in many settings, and will be employed by a diverse range of industries and companies.

Physics is the study of the interaction of systems which aids advances in technology. Physics covers the very smallest (nanoparticles) to the largest (galaxies and the universe itself).

Areas of physics include nuclear physics, astrophysics, particle physics, solid-state physics, cosmology, optical physics, mechanics, thermodynamics and magnetism.

RMIT physics graduates can work in many areas including advanced coatings, surface engineering, acoustics, geophysics, optics, radiation, soft condensed matter, materials modelling and simulation, and forensic/biomedical/scientific photography.

Depending on which area you major in, your employment prospects are vast.
Professional recognition

Depending on your major area of study the following organisations recognise graduates who have successfully completed the recommended courses in a major area of study:

- Safety Institute of Australia (SIAM)
- Australian Institute of Biology (AIB)
- The Australian Society for Microbiology (ASM)
- The Australian Biochemical Society (ABS)
- The Australian Institute of Medical and Biological Illustration (AIMBi)
- Australian Institute of Food Science and Technology (AIFST)
- Environment Institute of Australia and New Zealand (EIANZ)
- Royal Australian Chemical Institute (RACI)
- Australian Institute of Physics (AIP)
- The Institute of Photographic Technology, Incorporated (IPT)

Global connections

You may take one or more semesters at an overseas institution through the Education Abroad program at more than 120 partner universities.

Prerequisite

Units 3 and 4—one of mathematical methods (CAS) or specialist mathematics, and a study score of at least 30 in English (ESL) or at least 25 in any other English.

Additional consideration is given to those students who have successfully completed one or more of VCE biology, chemistry, physics or specialist mathematics.

Extra requirements

Non-Year 12 applicants must complete and submit a VTAC Pi form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

Pathway

Depending on the stream chosen, graduates of the Associate Degree in Applied Science who achieve a grade point average (GPA) of 2.0 or greater will be able to claim credit and are guaranteed entry into the Bachelor of Science (Applied Sciences).

Graduates with a GPA of less than 2.0 may apply, and if successful in gaining a place, may be eligible for exemptions.

You may also be interested in...

- Biotechnology (page 3)
- Environmental science (page 24)
- Food technology and nutrition (page 10)
- Nanotechnology/applied sciences (page 18)

ANNA RIGOLI

Bachelor of Science (Applied Chemistry)

‘The Bachelor of Science (Applied Chemistry) is a highly specialised degree and was exactly what I had been looking for because I wanted a career in cosmetics chemistry.

‘RMIT’s reputation and the fact that students graduate with experience were the key reasons I chose to study here.

‘Applied chemistry is such a hands-on degree. It prepares students for the world of work by teaching specific skills while also providing an understanding of the entire industry. My degree has helped me gain greater laboratory knowledge and skills, which are crucial for my field of work.

‘My favourite course has been maths practicals. I love the hands-on approach of the laboratory, and I love maths. Being able to work with very talented people and lecturers has also been a major highlight of my studies.

‘I am looking forward to completing my degree and finding a job within the cosmetics industry. I hope to one day successfully create my own line of cosmetics and skin care.’

ACADEMIA SCIENCE

C3209 Certificate III in Science

Duration: FT0.5 or PT1 — V

2011 ATAR: —

www.rmit.edu.au/programs/c3209

CITY CAMPUS

This program provides you with a pathway into further study in science. It is designed for mature age students and others who have not undertaken VCE science subjects or have not satisfactorily completed VCE science.

What you will study

You will study conventional mathematics, chemistry, biology and computing courses in a more applied and practical way. You will spend considerable time in industry standard laboratories to gain hands-on experience. Classes are small, with no more than 30 students to maximise interaction with teachers.

Teachers deliver higher level programs and are aware of the practical applications of the courses and what is required for future study. In addition to the core science courses, students also learn about scientific communication, including scientific writing skills and how to read and interpret scientific literature.

Prerequisite

Applicants must have sufficient language and educational background to enable them to successfully study at Certificate III level.

Pathway

This program provides students with the necessary knowledge and skills to allow them to apply for entry to related certificate IV and diploma programs. This is an alternative pathway to the traditional VCE option.
‘I began the Bachelor of Environmental Science after finishing the Diploma in Conservation and Land Management at RMIT. The pathway between the two programs allowed me to gain both a diploma and a degree in only four years.

‘I have had many challenging experiences, made great friends and have developed extensive knowledge through practical and theoretical studies throughout my time at RMIT. I have gained broad scientific experience and developed skills through RMIT teachings on and off campus that will greatly assist me in the future.

‘Participating in the environmental research project in Ho Chi Minh City in Vietnam has been a highlight of my studies. The project involved researching sustainable urban development and concentrating on the issues, opportunities and limitations in regard to the Clean Development Mechanism.

‘Research began in Melbourne and we then spent two intensive weeks meeting with different companies, government bodies and organisations to further develop our knowledge on how sustainable development works in Vietnam and how it can be improved.

‘We all faced many challenges in Vietnam, through determining government processes, construction, planning and community culture, but the team enjoyed the process and learnt a great deal.

‘After finishing I’d like to travel and gain more life experience before getting started in a career. I hope to work in the marine industry focusing on conservation and regulated fishing practices. I want to protect what the ocean has to offer and help maintain its ecosystems.’

John Cooper
Bachelor of Environmental Science
ENVIRONMENTAL SCIENCE

BP192 Bachelor of Environmental Science
Duration: FT3 or PT6—V X
2011 ATAR: 59.15
www.rmit.edu.au/programs/bp192
CITY CAMPUS

Environmental science at RMIT is concerned with the evaluation and management of all aspects of the environment (atmosphere, hydrosphere, lithosphere and biosphere). This degree will provide you with a detailed knowledge of processes which occur in both natural and degraded environments, combined with a specialisation in two areas of environmental study. One of the specialisations will be either environmental chemistry or environmental biology. The other specialisation can be chosen from environmental engineering, environmental management, instrumental analysis or geospatial science.

In the environmental science degree at RMIT, you will:

- gain considerable hands-on experience with equipment both in the laboratory and in the field. This is done in small groups to give each student equal opportunity.
- take part in many field trips. There are usually two to three field trips per semester.
- be given the opportunity to work on collaborative projects with industry. This generally involves working in small teams.

Considerable emphasis is placed on enabling each student to settle into this program and providing additional academic help, where needed.

Working with industry

Regular field trips are a feature of this degree. They involve teamwork and are often carried out in association with government agencies, environmental agencies and consultancies. All students also engage with industry in their final year project.

There is also an opportunity to undertake a team research project in Vietnam.

What you will study

Year one

You will study chemistry and biology related to the environment, the processes involved in the development of the Earth, statistics, scientific communication, and ideas of environmental thought and action. There are a number of excursions during the year, including a weekend trip to French Island.

Year two

You will choose your two specialisations. All students study processes which occur in the natural environment and attend several excursions each semester.

Year three

You will continue with your specialisations and explore processes occurring in degraded environments. In first semester you will undertake a week-long field trip and learn how to work effectively in teams on a set project. Currently this project takes place in Lakes Entrance investigating the health of a local river and lake. In the second semester, you will work in a team on a science project of your choice, generally with an industry partner.

As an alternative to the science project, you may apply to be part of the Vietnam project, or attend an excursion to Lizard Island in Queensland.

Honours

An honours year is available.

Career outlook

The training and the experiences provided at RMIT are modelled on the type of work likely to be required after graduation. This makes the RMIT graduates in environmental science highly employable.

Graduates obtain jobs in environmental consultancies, government agencies, resource management, research and education, and the mining/manufacturing industry.

Typical tasks that graduates undertake include sample collection and analysis, waste management, ongoing monitoring and assessment, environmental impact assessment, site remediation, policy development, cleaner production, environmental education and training and environmental auditing.

A number of past graduates are now in senior positions in several industry areas, including the Environmental Protection Agency (EPA).

Professional recognition

All graduates will be eligible for membership of the Environment Institute of Australia and New Zealand. Those with sufficient chemistry may apply to the Royal Australian Chemical Institute for membership.

Global connections

Students may spend one semester or one year at an overseas institution through the Education Abroad program at more than 120 partner universities. Recent students have studied in Denmark (Technical University of Denmark), Canada (Concordia), Sweden (Lund University), Holland (Delft University of Technology) and the USA (Buffalo State University).

Prerequisite

Units 3 and 4—one of mathematical methods (CAS) or specialist mathematics and a study score of at least 30 in English (ESL) or at least 25 in any other English.

Extra requirements

Non-Year 12 applicants must complete and submit a VTAC PI form, available online at www.vtac.edu.au, if they wish other information to be considered.

Please refer to the 2012 VTAC Guide for full details on extra requirements.

Pathway

RMIT graduates of the following program may be eligible to apply for exemptions of up to one year:

- Diploma of Conservation and Land Management

You may also be interested in...

- Applied sciences (page 22)

See the environment and planning brochure for more information on:

- Environment
- Environmental engineering
- Environmental science/environment engineering
- Environmental science/management

Legend: FT—Full-time (number of years); PT—Part-time (number of years); RC—A range of selection criteria applied; N/A—Not available; D—Degree program; T—TAFE program
See page 29 for application details: V—VTAC; X—RMIT Direct; RC—RMIT School; X—Extra requirement
I have participated in study tours both nationally and abroad. A two-week research trip to Lizard Island in the Great Barrier Reef was a great way to learn and apply knowledge while having lots of fun. I also took part in a six-month exchange to William Paterson University, New Jersey, USA, where I had the opportunity to work in an international lab space. These experiences have given me an opportunity to see what life can be like once I have graduated and I have gained a wonderful network of professors and industry contacts and met some great friends too!

Candice Raeburn
Bachelor of Science (Applied Sciences)
SCHOLARSHIPS

Scholarships at RMIT: a world of possibilities
Commencing and current students are strongly encouraged to apply for an RMIT scholarship.
Each year RMIT awards millions of dollars in scholarships to thousands of RMIT students across all TAFE, university and postgraduate program areas.
RMIT scholarships recognise academic achievement, leadership and community skills. RMIT also offers Equity and Aboriginal and Torres Strait Islander scholarships to assist students from a range of backgrounds to achieve their study ambitions.

Scholarships for academic achievement
If you achieve outstanding VCE (or equivalent) results, there are many opportunities to have your talents rewarded at RMIT.

Leadership scholarships
Leadership and community involvement scholarships provide assistance in the education of young people with outstanding leadership potential. These scholarships target students with a passion for study and a commitment to contributing to their community.

Equity scholarships
Equity scholarships are available to assist students from disadvantaged backgrounds.

Scholarships for Aboriginal and Torres Strait Islander students
RMIT is committed to supporting Aboriginal and Torres Strait Islander students to engage in study through financial support.

Research scholarships
RMIT has various scholarships to assist you with your academic and career goals.

Further information on these and many more scholarships is available on our website: www.rmit.edu.au/scholarships

TAFE ENROLMENT

The structure of a TAFE qualification is pre-determined by the relevant industry training package. How you progress through the qualification levels in a training package, combined with your eligibility for a government-subsidised place, will determine the tuition fees that you will pay.
For the following program, you will be admitted into the highest qualification level and can choose to exit with a lower listed qualification upon the successful completion of the required courses (subjects). Your eligibility for a government-subsidised place will be assessed at the highest entry point and this will determine the fees you will pay:
» Food science and technology (page 9)
More information about TAFE tuition fees is available in Money matters on page 28.

MORE DEGREE AND TAFE STUDY OPTIONS
The following brochures are also available:
» Apprenticeship and traineeship
» Architecture and building
» Art and design
» Business
» Community services and social sciences
» Computing and information technology
» Education and training
» Engineering
» Environment and planning
» Health and medical sciences
» Justice and legal
» Media and communications

Order more brochures online at www.rmit.edu.au/programs/publications.
Alternatively, speak to a customer service consultant at RMIT’s Info Corner. Tel. + 61 3 9925 2260, email study@rmit.edu.au, or drop into Info Corner at 330 Swanston Street (cnr La Trobe St), Melbourne.
TAFE programs

At TAFE you may be offered a state government-subsidised place or a full-fee place.

State government-subsidised places

You are eligible for a government-subsidised place if you are:

- an Australian citizen, an Australian Permanent Resident, a Special Category Visa holder (sub-class 444, New Zealand citizen), or an East Timorese asylum seeker
- under 20 years of age on 1 January in the year you start studying
- enrolling in a Foundation Skills qualification (as categorised by Skills Victoria)
- enrolling in a qualification that is accredited at a higher level than the qualifications you already hold
- a Victorian apprentice commencing in 2011.

TAFE tuition fees are determined by the level of the qualification and in 2011 they were categorised as follows:

<table>
<thead>
<tr>
<th>Skills Creation: certificate I and II</th>
<th>$1.51 per student contact hour with a minimum fee $105 and a maximum fee $875 p.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skills Building: certificate III and IV</td>
<td>$1.84 per student contact hour with a minimum fee $188 and a maximum fee $1250 p.a.</td>
</tr>
<tr>
<td>Skills Deepening: diploma and advanced diploma</td>
<td>$3.79 per student contact hour with a minimum fee $375 and a maximum fee $2000 p.a.</td>
</tr>
</tbody>
</table>

For information about the TAFE program level you will be enrolled in and how this will affect your eligibility for a government-subsidised place and the tuition fees that you will pay, please refer to www.rmit.edu.au/programs/apply/tafe/eligibility.

Full-fee places

If you do not meet the criteria listed above then you will be offered a full-fee place (FFP). FFP students are required to pay the approved tuition fee for their program. FFP fees vary according to each program. A full list of fees for TAFE programs is available online at www.rmit.edu.au/programs/fees/tafe/fullfee.

Financial assistance

Financial assistance may be available to eligible students through the VET FEE-HELP scheme, which is a government loans scheme to assist students to pay their tuition fees. For information visit www.deewr.gov.au/vetfeehelp.

TAFE fee concession

If you are a Victorian Government-funded student with a Health Care Card or receive government benefits through Centrelink you may be entitled to a concession on your tuition fees, which in most cases is equivalent to the minimum fee for the qualification level. For information visit www.rmit.edu.au/programs/fees/tafe/concession.

More information

Australian students may be eligible to apply for income tax deductions relating to the education expenses that are linked to their employment. Students should check with an accredited taxation accountant/consultant as to their eligibility for possible deductions. The Australian Taxation Office website may also be useful www.ato.gov.au.

Material fees (TAFE and degree)

Material fees are charged by RMIT for goods and services associated with your study such as field trips or lecture notes, reading material or course readers and laboratory or workshop equipment that is consumed by you or may become your own property after you have completed the course. These fees are not compulsory and you can choose to purchase these items independently.

Please note: fees indicated relate to 2011 and should be used as a guide only. RMIT reserves the right to adjust fees for full-fee places on an annual basis.

Associate degree and degree programs

If you are applying for an associate degree or degree program you may be offered a Commonwealth-supported place (CSP).

Commonwealth Supported Places (CSP)

A CSP is jointly funded by you and the Commonwealth Government. Some Commonwealth supported students may be eligible for HECS HELP. The amount to be paid is defined by Student Contribution ‘bands’. In 2011, the following student contributions for a standard, annual, full-time load applied:

<table>
<thead>
<tr>
<th>Student contribution band</th>
<th>Maximum student contribution for a place in 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band—national priorities: mathematics, statistics, science</td>
<td>$4355</td>
</tr>
<tr>
<td>Band 1: humanities, behavioural science (including clinical psychology), social studies, foreign languages, visual and performing arts, education, nursing</td>
<td>$5442</td>
</tr>
<tr>
<td>Band 2: computing, built environment, health (allied health and other health), engineering, surveying, agriculture</td>
<td>$7756</td>
</tr>
<tr>
<td>Band 3: law, dentistry, medicine, veterinary science, accounting, administration, economics, commerce</td>
<td>$9080</td>
</tr>
</tbody>
</table>

More information

HOW TO APPLY

Before applying for a program at RMIT, check the mode of application and the extra requirements in this brochure, the VTAC Guide or at www.rmit.edu.au/programs.

<table>
<thead>
<tr>
<th>How to apply by program type</th>
<th>Semester 1 intake</th>
<th>Semester 2 intake (if offered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degrees and associate degrees (not including honours)</td>
<td>VTAC application</td>
<td>Direct application</td>
</tr>
<tr>
<td>Certificate IV, diploma, advanced diploma (full-time)</td>
<td>VTAC application</td>
<td>Direct application</td>
</tr>
<tr>
<td>Certificate IV, diploma, advanced diploma (part-time)</td>
<td>VTAC application</td>
<td>Direct application</td>
</tr>
<tr>
<td>Certificate III and lower*</td>
<td>RMIT school-based application</td>
<td>RMIT school-based application</td>
</tr>
<tr>
<td>Apprenticeships and traineeships</td>
<td>RMIT school-based application</td>
<td>RMIT school-based application</td>
</tr>
</tbody>
</table>

* Some certificate III and lower programs are administered by direct application. Please visit www.rmit.edu.au/programs for more information.

VTAC application

To apply for the following RMIT programs for Semester 1 2012, you need to apply through the Victorian Tertiary Admissions Centre (VTAC):

- degree programs—full-time and part-time
- certificate and diploma programs—full-time and part-time.

For more detailed information about the VTAC application process, entrance requirements and application dates go to www.vtac.edu.au.

Direct application

To apply for one of the following programs submit a direct application at www.rmit.edu.au/programs/apply:

| TAFE | » VCE and VCAL
» full-time and part-time TAFE programs not offered through VTAC |
| Degree | » new degrees not offered through VTAC
» distance education degree program |
| Midyear | » all midyear applications |

RMIT school-based application

A number of TAFE certificate I, II, III and a limited number of certificate IV programs accept applications directly to the relevant RMIT school. Information on where to obtain and lodge an application can be found on the program information web page at www.rmit.edu.au/programs, by contacting Info Corner, or by contacting the relevant RMIT school at www.rmit.edu.au/schools.

Midyear entry

To apply for midyear entry at RMIT you will need to apply online at www.rmit.edu.au/programs/midyear.

Not all RMIT programs will accept applications for midyear entry. A list of programs accepting midyear applications is published in May at www.rmit.edu.au/programs/midyear.

Entrance requirements

RMIT has general requirements of entry which applicants are required to meet in order to demonstrate their capacity to successfully complete an RMIT program. The general requirements of entry for undergraduate programs can be found at www.rmit.edu.au/policies/students/selection.

Extra requirements

Many programs at RMIT have extra requirements as part of their selection process such as:

- an interview
- a test
- a folio
- completion of additional supplementary forms.

It is very important that you carefully read any extra requirements listed under programs in the current VTAC Guide or in RMIT program brochures. Failure to comply with these requirements by the date specified will jeopardise entry into a program.

Application dates

Key application dates are as follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 May</td>
<td>Midyear intake applications open</td>
</tr>
<tr>
<td>31 May</td>
<td>Closing date for direct applications—midyear (timely)</td>
</tr>
<tr>
<td>1 August</td>
<td>VTAC applications open</td>
</tr>
<tr>
<td>14 August</td>
<td>Direct applications for degree and diploma programs open (Semester 1 2012 intake)</td>
</tr>
<tr>
<td>30 September</td>
<td>Closing date for VTAC applications (timely)</td>
</tr>
<tr>
<td>11 October</td>
<td>Closing date for VTAC SEAS and Direct ACESS applications</td>
</tr>
<tr>
<td>31 October</td>
<td>Closing date for direct applications—selected TAFE programs</td>
</tr>
<tr>
<td>10 November</td>
<td>Closing date for direct applications—postgraduate and honours (timely)</td>
</tr>
<tr>
<td>11 November</td>
<td>Closing date for VTAC applications (late)</td>
</tr>
<tr>
<td>1 December</td>
<td>Closing date for direct applications—selected degree and TAFE programs</td>
</tr>
<tr>
<td>9 December</td>
<td>Closing date for VTAC applications (very late)</td>
</tr>
</tbody>
</table>

International/non-resident of Australia

Applicants who are not Australian or New Zealand citizens, permanent residents of Australia or holders of a Permanent Humanitarian or Temporary Protection Visa should apply through RMIT International Services (unless currently studying Year 12 in Victoria—VCE or the International Baccalaureate).

For more information visit www.rmit.edu.au/programs/international.

More information

For more information about RMIT programs and application procedures go to www.rmit.edu.au/programs/apply

or contact Info Corner at 330 Swanston Street, Melbourne, tel. +61 3 9925 2260 or email study@rmit.edu.au.