Engineers Change the Way We Live

They turn technical discoveries into practical solutions.

From the water we drink, the buildings in which we live, the devices we use to surf the net, and the technology that makes our lives more efficient, almost every aspect of our lives has been influenced by an engineer.
Engineering at RMIT

RMIT engineering is based on innovation and creativity.

RMIT is recognised internationally for its expertise and leadership in engineering education and research.

Specialised programs allow you to develop skills in the areas that interest you most. You’ll design and create products, systems, structures and services that transform industry and improve lives. You’ll benefit from strong industry partnerships with local and global opportunities.

What Kind of Engineering Is Right for Me?

With so many different types of engineering available, it can be hard to decide which one is best for you.

Take the quiz and find out.

https://trueengineer.com.au
Early Birds Catch Worms

RMIT’s specialised programs mean that you gain specific knowledge from the start of your studies.

RMIT strikes the perfect balance between specialised degrees and transferable skills.

You’ll quickly figure out what sets your chosen area apart from other types of engineering. You’ll begin working with the technology you need to do the job, so by the time you graduate, you’ll already have lots of experience in your field.

Bring Home the Big Bucks

Engineers are hot property in the job market.

On graduation you should be clocking up an average salary of $62,000* and you’ll be on your way to a career that could bring you as much as $300,000 a year.

Sources: Graduate Salaries 2014, Graduate Careers Australia, p. 1.

Double Up

RMIT’s range of double degrees will broaden your education, increasing your skills and career opportunities.

You’ll work across different disciplines and industries, giving you more options and expertise when you graduate.

Double degrees usually take only one more year to complete than a single degree in engineering.
Graduate Accredited with Engineers Australia

RMIT’s engineering bachelor degrees are accredited with Australia’s peak body for engineers, Engineers Australia. Once you graduate, you’ll be eligible for graduate membership.

Australia is also one of 15 countries that are signatories to the International Engineering Alliance, also known as the Washington Accord. This means that your degree will be recognised in all signatory countries.

Find out more at www.ieagreements.org/Washington-Accord.

Get Connected

As an RMIT engineering student you’ll have loads of opportunities to engage with industry from the start.

Through work placements, industry projects, internships, seminars and events, you’ll be in contact with industry every step of the way.

You’ll have the chance to do 12 weeks’ work experience, research projects in collaboration with industry and have the opportunity to work overseas with leading organisations.

Practical Knowledge

As a degree student at RMIT, you’re required to do 12 weeks’ work experience. This is to make sure you have real-life skills, and receive accreditation with Engineers Australia.
I decided to study at RMIT given its wide range of industry contacts, which makes it easier to network with successful people within the industry.

During my studies I’ve completed eight months’ work experience at Grey Innovation, working on biofeedback devices. The knowledge I’ve gained has helped me with the practical side of engineering, which is often quite different to the learning and research side.

Working in an industry environment as part of a multidisciplinary team broadened my knowledge and enabled devices to be analysed from multiple angles.
International experiences provide you with a competitive edge.

Opportunities include international work experience, exchange and study tours.

RMIT International Industry Experience and Research Program (RIIERP)

Experience life as an engineer – with a global twist. Live and work overseas on a six- to 12-month paid international placement to get ahead in the job market and gain industry know-how abroad.

You’ll gain international experience and a new way of thinking when you work with leading companies like Airbus, Bentley Motors, Siemens, Audi, Boeing, Nestlé, Robert Bosch, Volkswagen, BMW and the Rolls-Royce group.

Find out more at www.rmit.edu.au/riierp.
Ashim Panta
While studying his degree in aerospace engineering, Ashim had the opportunity to do a six-month placement with Airbus in Toulouse, France.

Chamendra Amarasinghe
Chamendra undertook an aerospace engineering work placement at Airbus Operations GmbH in Buxtehude, Germany.

Alex Ware
Advanced manufacturing and mechatronics student Alex undertook a RIERP placement with Continental in Hannover, Germany.

Karim Eldib
During his degree in mechanical engineering, Karim undertook an internship at Solvay Energy Services in their mines in Granada, Spain.
Building a Bridge Between Theory and Practice

Project-based learning is key to teaching at RMIT.

It encourages you to draw on your own creativity when problem-solving and teaches you to bridge the gap between theory and practice.

Most engineers work in teams, and at RMIT, so will you. You’ll form teams and work on projects right from the start. Not just because that’s the way engineers work, but so you have a chance to show what you can do.

This could include working with industry partners at the Engineering Learning Factory, or developing your own solutions to engineering problems through the EnGenius program. Project-based learning ensures you’ll graduate ready for work.

1. The EMBER project.
2. Taylor Crameri, Bachelor of Engineering (Civil and Infrastructure) (Honours) student, participated in the Engineers Without Borders Challenge.
3. Associate Degree in Engineering Technology (Mechanical) student Benjamin Gregor was part of the Next Generation LED Street Lights project.
EMBER
As part of the Design 3 course, electrical, electronic, communication, computer and biomedical engineering students tackle a design challenge. Students work in teams to develop an idea from concept to reality.

Learn more about the EMBER project, which monitors the temperature of a haystack in order to prevent spontaneous combustion:
http://tinyurl.com/RMIT-EMBER

Engineers Without Borders (EWB) Challenge
The EWB Challenge is a design program run by EWB Australia, a member-based, community organisation that creates social value through engineering.

The Challenge provides engineering students the opportunity to work on real, inspiring, sustainable and cross-cultural development projects.

Hear from RMIT students about their experience in the EWB Challenge:
http://tinyurl.com/RMIT-EWB

Next Generation Street Lights
RMIT engineering students have collaborated with Auslite to develop an energy efficient LED street light as part of an Engineering Learning Factory project at RMIT’s Advanced Manufacturing Precinct.

Find out more about this project by hearing from Auslite and the students involved in the Next Generation LED Street Lights project:
http://tinyurl.com/RMIT-NextGenerationStreetLight
There’s more than one way to reach your goal.

The Associate Degree in Engineering Technology and a range of advanced diplomas provide you with options to help you get where you want to go.

Associate Degree

The two-year Associate Degree in Engineering Technology is your pathway to a future in engineering. At the end of the first year, which covers general principles in engineering, you’ll choose from one of seven majors. Graduates who achieve a minimum Grade Point Average of 2.0 out of 4.0 are guaranteed entry into a related bachelor degree with credit for the equivalent of two years of study.

Advanced Diplomas

A two-year advanced diploma is ideal if you want to specialise in a specific engineering discipline from the very start of your studies. Once you complete an advanced diploma, you can apply for entry into a relevant bachelor degree and you may get up to one-and-a-half years’ credit.

"I articulated into a degree from the Advanced Diploma of Engineering Design* – where I was awarded the Jacobs Prize for top student in the program.

The advanced diploma gave me the technical knowledge to be confident when designing structures, while group assignments helped me to develop interpersonal skills by working as a team to achieve a common goal."

Nick Yong

Program is now called the Advanced Diploma of Engineering Technology.

Advanced Diploma of Engineering Design*

and

Bachelor of Engineering (Civil and Infrastructure) (Honours)
Bachelor of Engineering (Aerospace Engineering) (Honours)

Associate Degree in Engineering Technology – Aerospace major
Advanced Diploma of Engineering (Aeronautical)

Bachelor of Engineering (Civil and Infrastructure) (Honours)

Associate Degree in Engineering Technology – Civil major
Advanced Diploma of Engineering Technology

Bachelor of Engineering (Computer and Network Engineering) (Honours)

Associate Degree in Engineering Technology – Computer and Networking major
Associate Degree in Engineering Technology – Electrical and Electronic major
Advanced Diploma of Computer Systems Engineering

Bachelor of Engineering (Electrical and Electronic Engineering) (Honours)

Associate Degree in Engineering Technology – Electrical and Electronic major
Advanced Diploma of Electronics and Communications Engineering
Advanced Diploma of Engineering Technology – Electrical

Bachelor of Engineering (Electrical Engineering) (Honours)
Bachelor of Engineering (Electronic and Communication Engineering) (Honours)

Bachelor of Engineering (Automotive Engineering) (Honours)
OR
Bachelor of Engineering (Mechanical Engineering) (Honours)

Associate Degree in Engineering Technology – Mechanical major
Advanced Diploma of Engineering (Mechanical)

Bachelor of Engineering (Advanced Manufacturing and Mechatronics) (Honours)

Associate Degree in Engineering Technology – Advanced Manufacturing and Mechatronics major

Bachelor of Engineering (Sustainable Systems Engineering) (Honours)

Associate Degree in Engineering Technology – Sustainable Systems major

Guaranteed entry into the degree with credit for the equivalent of two years’ study if you maintain a minimum Grade Point Average of 2.0 out of 4.0.

Entry into the degree with credit up to the equivalent of one-and-a-half years’ study is possible.
Aerospace Engineering and Aviation

If you are interested in planes, aircraft and airports, there are lots of different career opportunities.
RMIT is a national leader in aerospace engineering and aviation, with long-standing industry connections and extensive expertise in education and research.

RMIT’s diverse range of programs allows you to specialise in aerospace engineering, aviation management or pilot training.

You’ll have the opportunity to gain practical experience through hands-on projects and work experience in Australia and overseas.

RMIT ranked in the top 100 in the world for mechanical, aeronautical and manufacturing engineering

Source: QS World University Rankings by Subject 2015.
Aerospace Engineering

What is aerospace engineering?

Aerospace engineering is concerned with the research, design, development, construction, maintenance, testing, science and technology of aircraft and spacecraft.

What do aerospace engineers do?

Aerospace engineers design and construct aircraft, aerospace vehicles and propulsion systems including planes, jets, helicopters, unmanned aerial systems and spacecraft. They research, develop and test new materials, engines, body shapes and structures that increase the speed, strength, durability and performance of aircraft. They also plan thorough maintenance programs and implement strict safety and environmental controls for aircraft.

Where do aerospace engineers work?

Aerospace engineers may work in:

- aircraft design and manufacturing
- airlines and aviation companies
- military organisations
- non-aerospace organisations
- research

Firefighting Unmanned Aerial System (UAS)

The RMIT UAS Research Team have been supporting the Melbourne Metropolitan Fire Brigade in its use of a small multicopter UAS for firefighting since 2012. Building on this experience, and applying knowledge gained from degrees in aerospace and mechatronics engineering at RMIT, a team of students have been working to develop the next generation in firefighting and search-and-rescue UASs.

Aerial System (UAS) search-and-rescue UASs.

of students have been working to develop mechatronics engineering at RMIT, a team gained from degrees in aerospace and on this experience, and applying knowledge UAS for firefighting since 2012. Building Fire Brigade in its use of a small multirotor supporting the Melbourne Metropolitan The RMIT UAS Research Team have been research — non-aerospace organisations — airlines and aviation companies — aircraft design and manufacturing. Many engineers quickly move into positions of management within organisations. Skills in business management will give you an advantage, allowing you to progress into positions of responsibility and influence.

Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

www.rmit.edu.au/programs/bh078

Pathway Duration of pathway program Additional duration

| BH078 | Bachelor of Engineering (Aerospace Engineering) (Honours) | Gain specialised skills in aerospace engineering focusing on the analysis, design and operation of aerospace hardware and software systems. You’ll study a broad range of areas such as aerodynamics, aerospace materials and structures, aerospace systems, design, dynamics and control, thermodynamics and propulsion. You’ll be provided with multiple opportunities for project-based learning, including a design, build, fly challenge for micro-aerial vehicles (MAVs), an Engineers Without Borders challenge and other hands-on activities. | City and Bundoora* | 4 years | Selection Mode ATAR (2016: 90.10) |

| BH082 | Bachelor of Engineering (Aerospace Engineering) (Honours) and Bachelor of Business (Management) double degree | Combine aerospace engineering with business skills to prepare you for leadership roles in an exciting global industry. | City and Bundoora* | 5 years | Selection Mode ATAR (2016: 94.20) |

| AD026 | Associate Degree in Engineering Technology – Aerospace major | The first year introduces you to the fundamental principles of engineering that apply across a range of fields. In second year you can choose to specialise in aerospace engineering. If you maintain a minimum Grade Point Average of 2.0 out of 4.0, you are guaranteed entry into the Bachelor of Engineering (Aerospace Engineering) (Honours), with credit for 192 study points (equivalent to two years’ study). | City | 2 years | Selection Mode ATAR (2016: 50.45) |

| C6131 | Advanced Diploma of Engineering (Aeronautical) | Gain the advanced technical and managerial skills needed for technicians and engineers working in aerospace manufacturing, design and maintenance at a paraprofessional level. Aircraft maintenance engineers install, maintain and repair aircraft engines, airframes, airframe systems, electrics, instruments, radio systems and aircraft sheet metalwork. You’ll be equipped to work in small, medium and large enterprises as well as the defence forces. You may also be able to further your studies in the field of aerospace engineering. | City | 2 years | Selection Mode ATAR – Not Published |

AD = Associate Degree. ADg = Advanced Diploma.

1 Years one and two are conducted on the City campus and years three and four are conducted on the Bundoora campus.

2 Years one, two and three are conducted on the City campus and years four and five are shared between the City and Bundoora campuses. The management component is studied on the City campus for all five years.
As part of my degree I spent seven months working with Airbus Defence and Space in Germany. This was an incredible experience – I got to live abroad while gaining industry experience. From day one I felt like a real engineer and was given responsibilities within military projects.

I’ll never forget walking into the hangar of the Eurofighter Typhoon for the first time. I was granted security clearance to inspect the aircraft and take measurements. It was awe-inspiring to know that I was being trusted with this $100-million piece of equipment.
Aviation Science

What is aviation science?
Aviation science involves operation and planning in the aviation industry.

What do aviation managers do?
Aviation managers focus on operational management and planning roles within airlines and charter companies, air safety regulatory bodies and airports.

Where do aviation managers work?
Aviation managers may find work in:
- airline management and operations
- airport management and operations
- airport planning
- aviation charter business
- aviation consulting
- aviation regulation and safety
- military organisations

STUDY AT RMIT

BP070 | Bachelor of Applied Science (Aviation) – Aviation Management and Operations stream
Get prepared for employment in a range of operational, management and planning roles in the dynamic and vibrant aviation industry.
The aviation management and operations stream focuses on developing a breadth of skills and knowledge across the aviation industry. This includes operational and management aspects of airlines and airports, as well as cargo and logistics, ground handling, and safety.
Prerequisites: Units 3 and 4 – a study score of at least 25 in mathematics (any) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bp070

BP284 | Bachelor of Applied Science (Aviation) and Bachelor of Business (Management) double degree
You’ll learn about both the aviation industry and management, providing you with a wide range of employment options.
The aviation component will give you skills for a range of operational management and planning roles in the aviation industry.
The business management component will further enhance your understanding and skills and prepare you to manage contemporary organisations within complex and changing economic and social conditions.
Prerequisites: Units 3 and 4 – a study score of at least 25 in mathematics (any) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bp284

Vimal Alagappasa
Bachelor of Applied Science (Aviation)

“I’ve been fascinated by how planes work since I was a child, so I became an aircraft mechanic for Singapore Airlines Engineering Company.

“Working in the industry further developed my interest in the aviation sector and I decided to study the Bachelor of Applied Science (Aviation). I chose RMIT because it’s recognised globally and has a strong international reputation.

“One of the highlights of my studies has been the range of guest lecturers, who have provided valuable insights into the aviation industry. The degree teaches you relevant content and equips you with the knowledge and work-ready skills to succeed in the aviation industry.”
What do professional pilots do?

Professional pilots fly light planes, helicopters or large aircraft, depending on their licence level and experience, to transport passengers, mail and freight or provide other aviation services as required. They facilitate research in fields such as surveying, meteorology or environmental sciences and monitor situations related to defence and border protection and also train new pilots (with a Flight Instructor Rating).

Where do pilots work?

Pilots may find work providing:

- charter and sightseeing flights
- transport for outback stations and the mining sector
- assistance in military and border protection organisations
- search and rescue operations

With further experience pilots may find work in:

- multi-engine charter operations
- regional airlines
- specialist aviation services such as the Royal Flying Doctor Service
- major airlines in the role of first officer

With significant experience and managerial qualifications, pilots are able to seek positions within major airlines as a:

- chief pilot
- fleet manager
- flight operations manager/inspector

Flight training at RMIT takes place at the RAAF Williams Base in Point Cook, 25 kilometres south-west of central Melbourne. The airfield provides a range of airspace terrain and environments to maximise the variety of your navigational experience.

The 4500 feet of airspace over the airfield allows unrestricted training manoeuvres. As the only operator at Point Cook, there is minimal circuit congestion and delays. So RMIT can offer more take-offs and landings per hour than many other airfields – meaning you can get in the air more often!

STUDY AT RMIT

BP070 | Bachelor of Applied Science (Aviation) – Piloting stream

Get prepared for employment in a range of operational, management and planning roles in the dynamic and vibrant aviation industry.

In the piloting stream you will gain skills required to become a commercial pilot, while gaining knowledge about the aviation industry. Flight training can be taken in conjunction with RMIT Flight Training at Point Cook, or with any other government approved provider (either at Moorabbin or another aerodrome).

Prerequisites: Units 3 and 4 – a study score of at least 25 in mathematics (any) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL). Note: For the pilot stream, students must be able to obtain a Civil Aviation Safety Authority Class 1 Medical Certificate.

www.rmit.edu.au/programs/bp070

AD023 | Associate Degree in Aviation (Professional Pilots)

Develop the skills and experience necessary to become a professional pilot.

Designed to provide flexibility in fulfilling your chosen career, this program meets the commercial pilot licensing requirements of Australia’s Civil Aviation Safety Authority (CASA). The program features at least 160 hours of flying, exceeding the minimum CASA requirement of 150 hours.

As well as the Commercial Pilot Licence, you’ll also develop the necessary skills to apply for the Recreational Pilot Licence, the Air Transport Pilot Licence and the Private Pilot Licence. You can also complete electives that allow you to obtain either your Multi-Engine Command Instrument Rating or Flight Instructor Rating.

Prerequisites: Units 3 and 4 – a study score of at least 20 in mathematics (any) and a study score of at least 20 in any English (except EAL) or at least 25 in English (EAL).

www.rmit.edu.au/programs/ad023

Jess Dettmer
Associate Degree in Aviation (Professional Pilots)

Watch Jess’s experiences at RMIT’s Flight Training as she talks about gaining the skills she needs to achieve CASA certification as a commercial pilot and start her career in the sky.

http://tinyurl.com/Jess-RMITAviation
Biomedical Engineering

Bridge clinical medicine and the technology that supports it by providing solutions to help make a difference to people affected by medical conditions.

At RMIT, biomedical engineering is collaborative and interdisciplinary, encompassing science, medical science, IT and engineering.

Through hands-on learning and workplace experience, you’ll gain the skills to design and develop equipment and technologies to make an impact in this growing industry.
Engineers Without Borders (EWB) will sponsor me to take part in their Humanitarian Design Summit in Cambodia and they will provide assistance for my final-year research project. I would love to continue to be involved with EWB, and ideally I’ll be pursuing research in the field of biomedical engineering. My particular area of interest is prosthetics and artificial limbs, and my dream is to come up with high-tech, affordable options to be made and distributed in Africa and the Middle East, and my home country of Sri Lanka.

Rahul Ratwatte
Bachelor of Engineering (Biomedical Engineering) (Honours)

What do biomedical engineers do?
Biomedical engineers make a positive impact on people’s lives by improving medical treatments. They design systems and devices such as cardiac monitors, artificial hearts, contact lenses and wheelchairs. They collaborate with doctors and scientists on complex issues, using lasers and microcomputers to diagnose or monitor medical conditions.

Where do biomedical engineers work?
Biomedical engineers may work in:
- medical facilities with surgeons to design and fit artificial limbs
- hospitals where they manage equipment including CAT scanners and pacemakers
- universities, government departments or independent facilities undertaking research
- private medical and pathology laboratories

STUDY AT RMIT

BH069 Bachelor of Engineering (Biomedical Engineering) (Honours)
As part of this multidisciplinary degree you’ll study electronics, mechanical, chemical and materials engineering and biomedical sciences. You’ll develop problem-solving and communication skills to help you think critically and independently. You’ll come up with innovative ways to apply science and engineering to biomedicine and health care.

Biomedical engineering is growing at a rapid pace, so there will be significant demand for biomedical engineers in Australia and around the world.

Prerequisites: Units 3 and 4 – a study score of at least 20 in mathematics (any) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

www.rmit.edu.au/programs/bh069

Campus
City and Bundoora†
Duration
4 years
Selection Mode
ATAR (2016: 83.65)

† Years one and two are conducted on the City and Bundoora campuses and years three and four are conducted mostly on the Bundoora campus.
Chemical Engineering

Turn raw materials such as minerals and oils into useful, everyday products like pharmaceuticals, petrol, plastics and food.

At RMIT chemical engineering combines engineering science, design and practice.
RMIT programs are **industry accredited**, so your qualification can take you anywhere in Australia or around the world.

Well-equipped laboratories give you **practical experience** and prepare you for the workforce.

RMIT students have spent time at places like Nestlé, Melbourne Water, BP, Cadbury, CUB, ExxonMobil, Kraft and Rio Tinto.
I’ve had the opportunity to complete a 12-week internship at PETRONAS, a petrochemical plant in Malaysia. I was involved in a furnace improvement project and was lucky enough to be on the actual plant site.

Despite being a highly technical field, engineers are able to use their knowledge to give back to society in many different ways. I find it enjoyable and intriguing to see how the principles and concepts we learn at university are applied in everyday life.
What do chemical engineers do?

Chemical engineers ‘scale-up’ production of everything from life-saving medicines to your favourite chocolate bar and find ways to make processing industries more efficient and environmentally sound.

Where do chemical engineers work?

Chemical engineers work in a diverse range of industries including:

- chemical
- food
- water
- plastics/polymer
- biomaterials
- pharmaceuticals
- cosmetics

Watch as David shares what inspires him, his ambitions for the future and what new students can expect from the double degree in chemistry and chemical engineering.

David Amy, Bachelor of Science (Applied Chemistry) and Bachelor of Engineering (Chemical Engineering) (Honours)

http://tinyurl.com/David-RMITChemistry

STUDY AT RMIT

<table>
<thead>
<tr>
<th>BH079</th>
<th>Bachelor of Engineering (Chemical Engineering) (Honours)</th>
<th>Campus City</th>
<th>Duration</th>
<th>Selection Mode ATAR (2016: 80.40)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Study the application of chemical, physics and biological sciences and technology for the design and improvement of industrial processes. You’ll learn how to make processing industries work more efficiently and minimise their environmental impact by using less energy and producing less waste.</td>
<td>City</td>
<td>4 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Units 3 and 4 – a study score of at least 20 in Chemistry and in Mathematical Methods (CAS); and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.rmit.edu.au/programs/bh079</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BH087</th>
<th>Bachelor of Engineering (Chemical Engineering) (Honours) and Bachelor of Science (Biotechnology) double degree</th>
<th>Campus City</th>
<th>Duration</th>
<th>Selection Mode ATAR (2016: 81.25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Combine studies in chemical engineering with biotechnology, giving you a comprehensive understanding of how to combine both areas to produce products on a large scale. Biotechnology uses knowledge at the molecular level of living systems to devise strategies to solve important practical problems, such as controlling disease and making the environment safer. These integrated skills can be applied to environmental management, agriculture and natural resource management, as well as a range of biological-based products and processes.</td>
<td>City</td>
<td>5 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Units 3 and 4 – a study score of at least 20 in Chemistry and in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.rmit.edu.au/programs/bh087</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BH085</th>
<th>Bachelor of Engineering (Chemical Engineering) (Honours) and Bachelor of Business (Management) double degree</th>
<th>Campus City</th>
<th>Duration</th>
<th>Selection Mode ATAR (2016: 80.40)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>You’ll combine chemical engineering with core management principles in this double degree. Chemical engineering focuses on industrial application, and your engineering and management courses are linked to real situations. A business degree will prepare you to operate in a complex financial system – one often associated with large engineering projects.</td>
<td>City</td>
<td>5 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Units 3 and 4 – a study score of at least 20 in Chemistry and in Mathematical Methods (CAS); and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.rmit.edu.au/programs/bh085</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BH088</th>
<th>Bachelor of Science (Applied Chemistry) and Bachelor of Engineering (Chemical Engineering) (Honours) double degree</th>
<th>Campus City</th>
<th>Duration</th>
<th>Selection Mode ATAR (2016: 80.40)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By combining studies in chemistry and chemical engineering, you’ll be at the forefront of developing technologies that could change the world. As a graduate with a multidisciplinary qualification, you’ll be highly employable, because you’ll have a better understanding of the requirements of team members from both specialties. You’ll interact with a wide range of relevant industries and broaden your career prospects.</td>
<td>City</td>
<td>5 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Units 3 and 4 – a study score of at least 20 in Chemistry and in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.rmit.edu.au/programs/bh088</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BH099</th>
<th>Bachelor of Science (Food Technology and Nutrition) and Bachelor of Engineering (Chemical Engineering) (Honours) double degree</th>
<th>Campus City and Bundoora§</th>
<th>Duration</th>
<th>Selection Mode ATAR – Not Published</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Be prepared for leading roles in the food industry. You’ll acquire food science and engineering skills in the areas of product development and production systems. You’ll learn about the large-scale production of food, and how to design the plant, the process and the product.</td>
<td>City and Bundoora§</td>
<td>5 years</td>
<td>Not Published</td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Units 3 and 4 – a study score of at least 20 in Chemistry and in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.rmit.edu.au/programs/bh099</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ The first half of the food technology and nutrition component of this program is conducted on the City campus and the second half on the Bundoora campus.
Civil engineering is concerned with the planning, design, construction, management and maintenance of essential infrastructure like bridges, dams and roads.
RMIT’s civil engineering programs are actively engaged with industry and responsive to its trends and demands, putting RMIT at the forefront of infrastructure engineering education.

You’ll bridge the gap between theory and practice, with project-based learning, problem-solving and teamwork skills.

RMIT ranked in the top 100 in the world for civil and structural engineering

Source: QS World University Rankings by Subject 2015.
Civil Engineering

What do civil engineers do?
Civil engineers plan, design, construct and maintain roads, bridges, water supply schemes, sewerage systems, transportation systems, harbours, airports, railways, factories and large buildings.
They look at ways to extend the life of existing structures through fault identification and establishing proactive maintenance schedules.

Where do civil engineers work?
Civil engineers work as project managers, design engineers and engineering asset managers with:
— consultancies
— local government
— road authorities
— mining companies
— construction companies

Salary Guide

Civil/Structural Engineer
$60,000–$120,000
Including super for VIC (Melbourne) in the civil and structural engineering industry

Group Manager/Principal
$150,000+
Including super for VIC (Melbourne) in the civil and structural engineering industry

STUDY AT RMIT

BH077 | Bachelor of Engineering (Civil and Infrastructure) (Honours)
You’ll be able to specialise in civil infrastructure projects, geotechnical works, structures, transport or water resources.
The degree emphasises work experience and project-based learning.
Prerequisites: Units 3 and 4 – a study score of at least 20 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bh077

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Duration of pathway program</th>
<th>Additional duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD1 Engineering Technology – Civil major</td>
<td>2 years</td>
<td>2 years</td>
</tr>
<tr>
<td>AD2 Engineering Technology</td>
<td>2 years</td>
<td>2.5 years</td>
</tr>
</tbody>
</table>

BH088 | Bachelor of Engineering (Civil and Infrastructure) (Honours) and Bachelor of Business (Management) double degree
Combine civil and infrastructure engineering with an understanding of complex business issues.
Graduates move into management roles within the engineering industry, and provide technical and business leadership.
Prerequisites: Units 3 and 4 – a study score of at least 20 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bh088

AD026 | Associate Degree in Engineering Technology – Civil major
The first year introduces you to the fundamental principles of engineering that apply across a range of fields. In second year you can choose to specialise in civil engineering.
If you maintain a minimum Grade Point Average of 2.0 out of 4.0, you are guaranteed entry into the Bachelor of Engineering (Civil and Infrastructure) (Honours), with credit for 192 study points (equivalent to two years’ study).
Prerequisites: Units 3 and 4 – a study score of at least 20 in Mathematical Methods (CAS) and a study score of at least 20 in any English (except EAL) or at least 25 in English (EAL).
www.rmit.edu.au/programs/ad026

C6132 | Advanced Diploma of Engineering Technology
National Curriculum Code: 22228VIC
Gain basic knowledge and technical skills to work in the civil engineering industry. You’ll learn advanced AutoCAD and Revit drawings, basic environmental sustainability and undertake simple analysis and design tasks.
After graduating, you may be able to pathway into the civil and infrastructure engineering degree.
www.rmit.edu.au/programs/c6132

AD = Associate Degree. ADV = Advanced Diploma.
Some laboratory classes will take place on the Bundoora campus.

Watch Sophie-Grace talk about her experiences studying at RMIT and how she progressed from an associate degree to a bachelor degree.
http://tinyurl.com/SophieGrace-RMITCivil
Through the Transurban Females Excelling in Engineering and Technology mentoring program, I was able to secure a permanent position as a project engineer. This opportunity has given me the confidence to excel in industry.

Studying civil engineering is full of challenges, just like the ones you are faced within industry. As RMIT sets high standards and encourages excellence, I feel I’m well equipped for any challenge that comes my way.

Leena Thavisin
Bachelor of Engineering (Civil and Infrastructure) (Honours)
Computer Engineering

Computer and network engineering involves the design, implementation, integration and application of computers and devices or computer-based systems.
Studying computer engineering at RMIT gives you plenty of practical experience, thanks to strong links with industry, and well-equipped facilities.

Computer and network engineering are taught together to ensure you learn the fundamental ideas related to both fields.

You’ll conduct experiments and design your own projects to ensure you graduate work ready.
Computer Engineering

What do computer and network engineers do?

Computer and network engineers design, implement and operate telecommunication networks. They analyse, design and develop computer hardware to bring products to life and drive new technologies that make businesses more productive and competitive.

Where do computer and network engineers work?

Computer and network engineers can work in a range of areas including:
- telecommunications
- internet service providers
- large enterprises
- manufacturing, technology and business organisations
- government and defence

Medical Engineering Database Solution (MEDS)

RMIT engineering students have developed a device that can share electrocardiogram data between medical professionals – from paramedics to specialists.

As part of their third-year design course, the group of six students developed a system that can transmit ECG scans from patients and share this data with medical professionals to reduce the wait for diagnosis and treatment, and improve patient outcomes.

The MEDS team entered their concept into the Telstra University Challenge, which aims to explore ideas that will help create a connected world and benefit the Australian community.

The winning RMIT team were engineering students Jaad Cabbabe, Joshua Matthews, Cameron Nesbitt, Nadhila Noor, Elizabeth Duong and Matthew Innes, who beat 21 groups from 11 Australian universities.

Studying the associate degree at RMIT was the best decision of my life.

RMIT’s reputation and hands-on approach really appealed to me. I wanted to go to a university that balanced the practical component of engineering with the theory.

The associate degree prepares you for work. We practised and were tested on industry-standard equipment. Learning in smaller class sizes helped me engage with teachers more.

Another benefit is that it is a pathway into the degree. So now I’m continuing my studies in the Bachelor of Engineering (Computer and Network Engineering) (Honours).
BH072 | Bachelor of Engineering (Computer and Network Engineering) (Honours)

Computer and network engineering are taught together to ensure you learn the fundamental ideas related to both fields. You can choose to specialise in either area to ensure that you are work ready when you graduate.

Your work will be largely laboratory-based, where you’ll conduct experiments and design your own projects.

Prerequisites: Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

www.rmit.edu.au/programs/bh072

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Duration of pathway program</th>
<th>Additional duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADT1 Engineering Technology – Computer and Network major</td>
<td>2 years</td>
<td>2 years</td>
</tr>
<tr>
<td>ADT2 Engineering Technology – Electrical and Electronics major</td>
<td>2 years</td>
<td>2 years</td>
</tr>
<tr>
<td>BS1 Computer Systems Engineering</td>
<td>2 years</td>
<td>2.5 years</td>
</tr>
</tbody>
</table>

BH107 | Bachelor of Engineering (Computer and Network Engineering) (Honours) and Bachelor of Business (Management) double degree

Combine technical engineering solutions within the computer and network engineering sphere with the core knowledge required to successfully manage modern organisations.

Large-scale engineering projects have big responsibilities. By doubling up with a business degree, you’ll be more confident tackling complex financial systems. You’ll develop innovative approaches to projects and the ability to succeed in positions with more influence and responsibility.

Prerequisites: Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

www.rmit.edu.au/programs/bh107

BH091 | Bachelor of Engineering (Computer and Network Engineering) (Honours) and Bachelor of Computer Science double degree

Work with the hardware and structure of computer systems, as well as the software that is used to control them.

You’ll have engineering knowledge, skills and capabilities complemented and enhanced by programming skills and capabilities in designing, implementing and maintaining complex software systems.

Businesses will spend more on software and computer systems in the years to come and the demand for graduates with both engineering and computer science expertise is expected to be very high.

Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 20 in any English (except EAL) or at least 30 in English (EAL).

www.rmit.edu.au/programs/bh091

AD026 | Associate Degree in Engineering Technology – Computer and Network major

The first year introduces you to the fundamental principles of engineering that apply across a range of fields. In second year you can choose to specialise in computer and network engineering.

If you maintain a minimum Grade Point Average of 2.0 out of 4.0, you are guaranteed entry into the Bachelor of Engineering (Computer and Network Engineering) (Honours), with credit for 192 study points (equivalent to two years’ study).

Prerequisites: Units 3 and 4 – a study score of at least 20 in Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

www.rmit.edu.au/programs/ad026

C6121 | Advanced Diploma of Computer Systems Engineering

National Curriculum Code: UEE0411

Get started in computer engineering by gaining the skills to design, install, validate, evaluate and administer computer equipment and systems.

You’ll learn the theories and how to apply them to computer hardware and software applications for assembly, installation, testing and maintenance of office personal computers and computer networks.

You’ll be qualified for work as a technical officer or service supervisor, or may be able to continue your studies in computer and network engineering.

www.rmit.edu.au/programs/c6121

C4353 | Certificate IV in Telecommunications Networks Technology

National Curriculum Code: ICT40613

This is an entry point to the telecommunications industry. You’ll be introduced to the principles of telecommunication signalling, telecommunication networks operations, design and optical communication, and learn diagnostic skills associated with network cabling.

Following this program, you may go on to the Advanced Diploma of Computer Systems Engineering.

www.rmit.edu.au/programs/c4353

Manish Sharma
Bachelor of Engineering (Computer and Network Engineering) (Honours) and Associate Degree in Engineering Technology – Computer and Network major

AD = Associate Degree. ADg = Advanced Diploma.
Electrical and Electronic Engineering

Design, develop, produce, maintain and operate all things to do with electricity.
At RMIT, electrical and electronic engineering programs go beyond the theory and **put concepts into practice**.

You’ll work on projects to develop skills in the design, development, production, maintenance and operation of all things to do with electricity. RMIT allows you to focus on areas such as renewable energy or cutting-edge product development.

RMIT ranked in the top 100 in the world for electrical and electronic engineering

Source: QS World University Rankings by Subject 2015.
Electrical Engineering

What is electrical engineering?

Electrical engineering involves how electricity is produced and distributed. It focuses on applying and controlling electrical energy and developing better ways to meet the power demands of society and industry.

What do electrical engineers do?

Electrical engineers work on systems for the generation, distribution, utilisation and control of electric power systems. They are also involved in the transition to alternative and renewable energy sources.

Where do electrical engineers work?

Electrical engineers work in:
- the electrical supply industry
- public transport
- robotics and automation
- renewable energy
- defence

STUDY AT RMIT

<table>
<thead>
<tr>
<th>BH075</th>
<th>Bachelor of Engineering (Electrical Engineering) (Honours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathway</td>
<td>Duration of pathway program</td>
</tr>
<tr>
<td>AD</td>
<td>Engineering Technology – Electrical and Electronics major</td>
</tr>
<tr>
<td>AD</td>
<td>Engineering Technology – Electrical</td>
</tr>
</tbody>
</table>

Campus: City
Duration: 4 years
Selection Mode: ATAR
(2016: 72.30)

<table>
<thead>
<tr>
<th>BH081</th>
<th>Bachelor of Engineering (Electrical Engineering) (Honours) and Bachelor of Business (Management) double degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathway</td>
<td>Duration of pathway program</td>
</tr>
<tr>
<td>AD</td>
<td>Engineering Technology – Electrical and Electronics major</td>
</tr>
<tr>
<td>AD</td>
<td>Engineering Technology – Electrical</td>
</tr>
</tbody>
</table>

Campus: City and Bundoora
Duration: 5 years
Selection Mode: ATAR – Not Published

<table>
<thead>
<tr>
<th>BH083</th>
<th>Bachelor of Engineering (Electrical Engineering) (Honours) and Bachelor of Commerce double degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathway</td>
<td>Duration of pathway program</td>
</tr>
<tr>
<td>AD</td>
<td>Engineering Technology – Electrical and Electronics major</td>
</tr>
<tr>
<td>AD</td>
<td>Engineering Technology – Electrical</td>
</tr>
</tbody>
</table>

Campus: City and Bundoora
Duration: 5 years
Selection Mode: ATAR – Not Published

<table>
<thead>
<tr>
<th>AD026</th>
<th>Associate Degree in Engineering Technology – Electrical and Electronics major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathway</td>
<td>Duration of pathway program</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>Engineering Technology – Electrical and Electronics major</td>
</tr>
</tbody>
</table>

Campus: City
Duration: 2 years
Selection Mode: ATAR
(2016: 50.45)

Jamie Cox

Bachelor of Engineering (Electrical Engineering) (Honours)

"The highlight of my studies and career has been participating in the Australian-German Study Centre for Optofluidics and Nanophotonics program. I spent four months working in Germany, using machine vision to automate the calibration procedure for a one-of-a-kind nano-infiltration system. This experience really taught me the value of working to a high standard in your engineering work. The placement also opened my eyes to the endless opportunities for innovation in high-tech automation."

Notes:
- **AD** = Associate Degree. **ADg** = Advanced Diploma.
- ^ Most lectures take place on the City campus; however, some lab classes will run at specialised facilities at the Bundoora campus. The management component is studied on the City campus.
- " Most lectures take place on the City campus; however, some lab classes will run at specialised facilities at the Bundoora campus. The commerce component is studied on the City campus.
As part of my degree I undertook a 12-week work placement at an engineering consultancy firm. During my placement I saw how all the theory fell into place in real-life situations. This made my studies more engaging and really increased my skill base. It also gave me an insight into what my future could be like. I really loved my time and found the work new and exciting.

I have been accepted into a graduate program in Tasmania for a mining company called MMG Limited. I chose my graduate program because I knew it would be an adventure and an incredible experience. Together with my work experience, I know my degree will get me closer to my dream of working overseas.

“...

Salary Guide

- **Electrical Engineer**
 - $75,000–$90,000
 - Including super for VIC (Melbourne) in the manufacturing and operations (maintenance and engineering) industry

- **Power Systems Engineer**
 - $80,000–$120,000
 - Including super for VIC (Melbourne) in the energy design engineering (transmission and distribution/generation) industry

- **Engineering Manager**
 - $160,000–$200,000
 - Including super for VIC (Melbourne) in the energy design engineering (transmission and distribution/generation) industry

Electronic Engineering

What is electronic engineering?
Electronic engineering involves the design and operation of electronic devices that use components such as resistors, capacitors, inductors, diodes, transistors and integrated circuits and logic circuits, in a wide variety of equipment and systems.

What do electronic engineers do?
Electronic engineers create and operate electronic equipment and systems for home and industry including smartphones, tablets, medical equipment, radar, navigation aids, vehicle stability control, whitegoods and space exploration equipment. They work with businesses to maintain and update existing devices and systems and find ways to increase the efficiency of electronic devices.

Where do electronic engineers work?
Electronic engineers may find work in:
- manufacturing
- health and medical professions
- transport and aviation
- defence
- government departments
- telecommunications

What is electronic engineering? (continued)

Electronic engineering involves the design and operation of electronic devices that use components such as resistors, capacitors, inductors, diodes, transistors and integrated circuits and logic circuits, in a wide variety of equipment and systems.

What do electronic engineers do? (continued)
Electronic engineers create and operate electronic equipment and systems for home and industry including smartphones, tablets, medical equipment, radar, navigation aids, vehicle stability control, whitegoods and space exploration equipment. They work with businesses to maintain and update existing devices and systems and find ways to increase the efficiency of electronic devices.

Where do electronic engineers work? (continued)
Electronic engineers may find work in:
- manufacturing
- health and medical professions
- transport and aviation
- defence
- government departments
- telecommunications

STUDY AT RMIT

BH073 Bachelor of Engineering (Electrical and Electronic Engineering) (Honours)
Study the fundamentals of electrical and electronic engineering. This includes the generation, distribution and application of electrical energy, and the design and control of electrical and electronic devices and systems.
You can specialise in a wide range of areas including control systems, analogue and digital electronics, audiovisual, sensors and measurement technologies, and instrumentation.
Prerequisites: Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bh073

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Duration of pathway program</th>
<th>Additional duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAD Engineering Technology – Electrical and Electronics major</td>
<td>2 years</td>
<td>2 years</td>
</tr>
<tr>
<td>EAE Engineering Technology (Electrical)</td>
<td>2 years</td>
<td>2.5 years</td>
</tr>
<tr>
<td>EAT Electronics and Communications Engineering</td>
<td>2 years</td>
<td>2.5 years</td>
</tr>
</tbody>
</table>

BH109 Bachelor of Engineering (Electrical and Electronic Engineering) (Honours) and Bachelor of Business (Entrepreneurship) double degree
Learn how electricity and electronics work and how to build and maintain devices, while being entrepreneurial in your engineering activities.
You’ll enhance your engineering design capabilities by using innovative and creative business and entrepreneurial techniques. You’ll graduate better prepared to develop new products or start your own business.
Prerequisites: Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

BH110 Bachelor of Engineering (Electrical and Electronic Engineering) (Honours) and Bachelor of Business (International Business) double degree
Study the fundamental knowledge and principles in the field of electrical and electronic engineering, while developing the knowledge and skills to manage business complexity in an international context.
You’ll develop capabilities to identify the international impact on economies and businesses, and analyse and interpret the complex nature of global organisations and relationships.
Prerequisites: Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bh110

BH111 Bachelor of Engineering (Electrical and Electronic Engineering) (Honours) and Bachelor of Business (Management) double degree
Combine the fundamental knowledge and principles in the general field of electrical and electronic engineering, and develop the knowledge and skills to manage modern organisations.
You’ll graduate ready to move into an engineering management role rather than having to undertake further study.
Prerequisites: Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bh111

ADO26 Associate Degree in Engineering Technology – Electrical and Electronics major
The first year introduces you to the fundamental principles of engineering that apply across a range of fields. In second year you can choose to specialise in electrical and electronics engineering.
If you maintain a minimum Grade Point Average of 2.0 out of 4.0, you are guaranteed entry into the Bachelor of Engineering (Electrical and Electronic Engineering) (Honours), with credit for 192 study points (equivalent to two years’ study).
Prerequisites: Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) and a study score of at least 20 in any English (except EAL) or at least 25 in English (EAL).
www.rmit.edu.au/programs/ado26

AD – Associate Degree. ADg = Advanced Diploma.
* Most lectures take place on the City campus; however, some lab classes will run at specialised facilities at the Bundoora campus.
Electronic and Communication Engineering

What is communication engineering?
Communication engineering explores the way information is collected and distributed. It uses electronic, electromagnetic and photonic devices and systems including satellite, telephone, optical fibre and computer systems to collect and distribute information.

What do communication engineers do?
Communication engineers design, produce and operate equipment and systems used everywhere from homes to industry. They find ways to share information including voice, video, data or graphics, shared via a phone, radio, television, optical fibre network or satellite. They also work with businesses to maintain and update existing devices and systems.

Where do communication engineers work?
Communication engineers work in:
- telecommunications
- transport and aviation
- defence
- education
- space exploration
- environmental monitoring
- security and information services

<table>
<thead>
<tr>
<th>STUDY AT RMIT</th>
</tr>
</thead>
</table>

BH071 | Bachelor of Engineering (Electronic and Communication Engineering) (Honours)
You’ll develop knowledge and skills to use semiconductor devices to create a wide variety of products and services. You’ll also learn how electronic, photonic and electromagnetic devices exchange information over wireless or wired channels.
You’ll be able to specialise in your final years and complete a major design project to make you work ready.
Prequisites: Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

www.rmit.edu.au/programs/bh071

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Duration of pathway program</th>
<th>Additional duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE</td>
<td>Engineering Technology – Electrical and Electronics major</td>
<td>2 years</td>
</tr>
<tr>
<td>ECEC</td>
<td>Electronics and Communications Engineering</td>
<td>2 years</td>
</tr>
</tbody>
</table>

BH084 | Bachelor of Engineering (Electronic and Communication Engineering) (Honours) and Bachelor of Computer Science double degree
Combine electronic and communication engineering with computer science.
In the computer science component, you’ll gain extensive knowledge of computer systems infrastructure, software methods and technologies. You’ll also gain advanced knowledge and skills in developing network-based real-life computing applications.
Prequisites: Units 3 and 4 – a study score of at least 20 in Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

www.rmit.edu.au/programs/bh084

BH097 | Bachelor of Science (Physics) and Bachelor of Engineering (Electronic and Communication Engineering) (Honours) double degree
Combine physics with electronic and communication engineering.
In the physics component, you will be trained in the fundamentals of natural phenomena and their applications (e.g. fields and waves, quantum mechanics, radiation physics, thermodynamics, nuclear physics, solid state physics, astrophysics and cosmology).
Prequisites: Units 3 and 4 – a study score of at least 20 in Physics and in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

www.rmit.edu.au/programs/bh097

AD026 | Associate Degree in Engineering Technology – Electrical and Electronics major
The first year introduces you to the fundamental principles of engineering that apply across a range of fields. In second year you can choose to specialise in electrical and electronics engineering.
If you maintain a minimum Grade Point Average of at least 2.0 out of 4.0, you are guaranteed entry into the Bachelor of Engineering (Electronic and Communication Engineering) (Honours), with credit for 192 study points (equivalent to two years’ study).
Prequisites: Units 3 and 4 – a study score of 20 in Mathematical Methods (CAS) and a study score of at least 20 in any English (except EAL) or at least 25 in English (EAL).

www.rmit.edu.au/programs/ad026

C6122 | Advanced Diploma of Electronics and Communications Engineering
National Curriculum Code: UEE60211
You’ll develop skills to design, validate and evaluate electronics and communication equipment as well as systems. You’ll also be able to manage risk, estimate and manage projects, and provide technical and sales advice.
You may be able to pathway into degrees in electronic and communication engineering and electrical and electronic engineering.

www.rmit.edu.au/programs/c6122

C6120 | Advanced Diploma of Engineering Technology – Electrical
National Curriculum Code: UEE6111
Gain skills and knowledge in electrical design, programmable logic controllers, supervisory control and data acquisition (SCADA) systems, PLC networking and motor control.
You’ll be qualified to work in the electrical industry or may be able to continue your studies in electrical engineering, or electrical and electronic engineering.

www.rmit.edu.au/programs/c6120

ADg = Associate Degree. AD = Advanced Diploma.
Environmental and Sustainable Engineering

Take a big picture approach to environmental problems.

Bridge the gap between engineering and environmental sustainability issues to ensure major projects are planned, designed, implemented and managed in an ecologically responsible and sustainable way.
RMIT programs focus on sustainability in line with trends in the global engineering profession.

You’ll make a difference to the world by introducing sustainable practices, reducing environmental disasters and preparing the community for the adverse effects of climate change.
Environmental and Sustainable Engineering

What is environmental engineering?
Environmental engineering applies engineering concepts and technical skills to preserve the environment and minimise water, soil and air pollution. It assesses the environmental impacts of engineering projects and develops corrective measures for environmental degradation.

What do environmental engineers do?
Environmental engineers protect, restore and create engineered and natural systems that are socially, environmentally and economically sustainable. They prepare environmental impact studies, improve water quality and address land salinity problems. They also develop cleaner production technologies and undertake rehabilitation of contaminated land.

Where do environmental engineers work?
Environmental engineers work in environmental consultancies or work in-house within a range of industries. They can also work in government departments such as the Victorian Department of Environment, Land, Water and Planning or government agencies such as VicRoads.

What is sustainable systems engineering?
Sustainable systems engineering combines different areas of engineering, taking a broad perspective to deliver technical solutions on large-scale projects. It focuses on sustainable development through better industrial systems and technical products. These include sustainable energy and processes for clean manufacturing.

What do sustainable systems engineers do?
Sustainable systems engineers take an engineering approach to develop technologies in order to ensure global development is sustainable. They develop clean manufacturing processes and improvements in technology.

Where do sustainable systems engineers work?
Sustainable systems engineers work in transport, logistics, defence and energy industries on major infrastructure and building projects. They work in state and federal government, local and international transport, infrastructure companies, and engineering companies and consultancies.

China Environmental Challenges Study Tour

Each year a group of RMIT environmental engineering and science students undertake an intensive two-week study tour through China, which provides an opportunity for students to receive an international perspective on a relevant environmental issue.

During the tour, students hear firsthand from experts working on real issues that are affecting the country. They are then able to collect data and other useful information to develop their own plan to approach these problems through engineering and policy-based solutions.
STUDY AT RMIT

BH080 | Bachelor of Engineering (Environmental Engineering) (Honours)
Learn the skills and knowledge to enter the diverse and rewarding field of environmental engineering. You can specialise in civil, ground water or chemical engineering, while strong ground water and hydrogeology is a focus.
You’ll learn about ground water, land contamination and remediation, wastewater treatment and recycling and urban systems.
You’ll have opportunities to take part in industry projects and site visits.
Prerequisites: Units 3 and 4 – a study score of at least 20 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bh080

BH096 | Bachelor of Environmental Science and Bachelor of Engineering (Environmental Engineering) (Honours) double degree
Combine elements of environmental science (understanding the interactions in the environment) with environmental engineering (designing solutions to environmental problems).
As a graduate you’re well placed to obtain work in a variety of workplaces, having an understanding of the science together with the ability to design solutions.
Prerequisites: Units 3 and 4 – a study score of at least 20 in one of Mathematical Methods (CAS) or Specialist Mathematics; and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bh096

BH076 | Bachelor of Engineering (Sustainable Systems Engineering) (Honours) double degree
Learn how to protect, restore and create engineered and natural systems that are socially, environmentally and economically sustainable.
You’ll focus on the development of a sustainable systems approach, bringing together the fundamentals of engineering sciences, mathematics and engineering design. You can specialise in energy, or transport and logistics.
Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bh076

BH092 | Bachelor of Engineering (Sustainable Systems Engineering) (Honours) and Bachelor of Business (Management) double degree
Combine the complementary disciplines of sustainable systems engineering and management to kickstart your career.
You’ll be able to combine engineering with business management studies, which include management, employment relations, accounting and finance, human resource management and marketing.
Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bh092

BH100 | Bachelor of Engineering (Sustainable Systems Engineering) (Honours) and Bachelor of Industrial Design (Honours) double degree
Combines the complementary disciplines of sustainable systems engineering and industrial design, to give you a head start in the industry.
A substantial capstone project provides an opportunity to integrate engineering and industrial design and real-life projects are undertaken within industry and community organisations.
Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bh100

AD026 | Associate Degree in Engineering Technology – Sustainable Systems major
The first year introduces you to the fundamental principles of engineering that apply across a range of fields. In second year you can choose to specialise in sustainable systems engineering.
If you maintain a minimum Grade Point Average of 2.0 out of 4.0, you are guaranteed entry into the Bachelor of Engineering (Sustainable Systems Engineering) (Honours), with credit for 192 study points (equivalent to two years’ study).
Prerequisites: Units 3 and 4 – a study score of at least 20 in Mathematical Methods (CAS) and a study score of at least 20 in any English (except EAL) or at least 25 in English (EAL).
www.rmit.edu.au/programs/ad026

* Some laboratory classes will take place on the Bundoora campus.
** Years one and two are conducted on the City campus and years three and four are conducted on the City and Bundoora campuses.
† Years one, two and three are conducted on the City campus and years four and five are shared between the City and Bundoora campuses. The industrial design component is studied on the City campus for all five years.

“Fieldwork practice in this double degree takes you all around Victoria to places you might never visit. You start to appreciate just how amazing the Earth is and how diverse the natural environments can be.
“It’s refreshing to get out of the classroom and into the field to see up close the things you’re taught. I really enjoy collecting samples and assessing the health of various environments.
“The double degree offers a wide range of subjects to allow you to study different aspects of the environment and to discover an area that interests you.”

Bethany Green
Bachelor of Environmental Science and Bachelor of Engineering (Environmental Engineering) (Honours)

Salary Guide

Environmental Engineer
$50,000–$120,000
Including super for VIC (Melbourne) in the civil and structural engineering industry

Wind Farm Engineer
$95,000–$120,000
Including super for VIC (Melbourne) in the energy design engineering (renewable) industry

Mechanical and Automotive Engineering

Learn what makes things tick.

RMIT is a leader in mechanical and automotive engineering.

You’ll gain experience in designing devices and systems, and improving machines and vehicles used in everyday life.

You’ll benefit from programs that are underpinned by high-impact research and collaboration with industry. International work placement opportunities with leading industries equip you for a global career.
RMIT ranked in the top 100 in the world for mechanical, aeronautical and manufacturing engineering

Source: QS World University Rankings by Subject 2015.
Mechanical Engineering

What is mechanical engineering?
Mechanical engineering involves the planning, design and development of machinery, solving problems and improving the machines used in everyday life.

What do mechanical engineers do?
Mechanical engineers apply their knowledge of materials, structures and energy to solve technical problems and improve the efficiency of machinery.

They plan, design and oversee the development, installation, operation and maintenance of machinery. They also design, analyse and improve products as diverse as refrigerators, washing machines, solar water heaters, pumps, engines, compressors, wind turbines and air-conditioning systems.

Where do mechanical engineers work?
Mechanical engineers work in a range of industries where they:
- design systems and machinery as part of a team
- provide technical support
- oversee quality control

Salary Guide

Mechanical Design Engineer $80,000–$100,000
Including super for VIC (Melbourne) in the manufacturing and operations (product design and development) industry

Engineering Manager $110,000–$140,000
Including super for VIC (Melbourne) in the manufacturing and operations industry

Study at RMIT

<table>
<thead>
<tr>
<th>BH070</th>
<th>Bachelor of Engineering (Mechanical Engineering) (Honours)</th>
<th>Campus</th>
<th>City and Bundoora**</th>
<th>Duration</th>
<th>4 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Learn how to apply knowledge of materials, structures, energy and management to solve technical problems.</td>
<td></td>
<td></td>
<td>Selection Mode ATAR (2016: 84.00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>You have the opportunity to specialise in computer-aided engineering and design, industrial aerodynamics and computational fluid dynamics, energy conservation and renewable energy, or mechatronics, dynamics and control.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.rmit.edu.au/programs/bh070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pathway</td>
<td>Duration of pathway program</td>
<td>Additional duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD•</td>
<td>Engineering Technology – Mechanical major</td>
<td>2 years</td>
<td>2 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD•</td>
<td>Engineering Mechanical</td>
<td>2 years</td>
<td>2.5 years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BH089</th>
<th>Bachelor of Engineering (Mechanical Engineering) (Honours) and Bachelor of Business (Management) double degree</th>
<th>Campus</th>
<th>City and Bundoora**</th>
<th>Duration</th>
<th>5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Combine mechanical engineering with business skills so you’ll be prepared for entrepreneurial and managerial roles in industry.</td>
<td></td>
<td></td>
<td>Selection Mode ATAR (2016: 87.10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A business degree will prepare you to operate in the complex organisational and economic systems often associated with large engineering projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.rmit.edu.au/programs/bh089</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BH090</th>
<th>Bachelor of Engineering (Mechanical Engineering) (Honours) and Bachelor of Science (Biotechnology) double degree</th>
<th>Campus</th>
<th>City and Bundoora**</th>
<th>Duration</th>
<th>5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Designed to meet the needs of engineers working at the interface of mechanical engineering and biotechnology, you’ll be well equipped to deal with technical and professional challenges in this growing area.</td>
<td></td>
<td></td>
<td>Selection Mode ATAR – Not Published</td>
<td></td>
</tr>
<tr>
<td></td>
<td>You’ll gain skills in genetic engineering, industrial microbiology, molecular agriculture, bioinformatics, and learn about the regulatory, ethical and legal issues in biotechnology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.rmit.edu.au/programs/bh090</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BH093</th>
<th>Bachelor of Engineering (Mechanical Engineering) (Honours) and Bachelor of Industrial Design (Honours) double degree</th>
<th>Campus</th>
<th>City and Bundoora**</th>
<th>Duration</th>
<th>5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Combining mechanical engineering and industrial design means you’ll gain technical and creative skills to engage at a professional level with the design and development of advanced manufactured products.</td>
<td></td>
<td></td>
<td>Selection Mode ATAR (2016: 87.00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.rmit.edu.au/programs/bh093</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AD026</th>
<th>Associate Degree in Engineering Technology – Mechanical major</th>
<th>Campus</th>
<th>City</th>
<th>Duration</th>
<th>2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The first year introduces you to the fundamental principles of engineering that apply across a range of fields. In second year you can choose to specialise in mechanical engineering.</td>
<td></td>
<td></td>
<td>Selection Mode ATAR (2016: 50.45)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you maintain a minimum Grade Point Average of 2.0 out of 4.0, you are guaranteed entry into the Bachelor of Engineering (Mechanical Engineering) (Honours), with credit for 192 study points (equivalent to two years’ study).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Units 3 and 4 – a study score of at least 20 in Mathematical Methods (CAS) and a study score of at least 20 in any English (except EAL) or at least 25 in English (EAL).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.rmit.edu.au/programs/ad026</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associate Degree. **B.Eng** = Advanced Diploma.

** Years one and two are conducted on the City campus and years three and four are conducted on the City and Bundoora campuses.
** Years one and two are conducted on the City campus and years three to five are conducted between the City and Bundoora campuses.
** Years one, two and three are conducted on the City campus and years four and five are conducted on the City campus. The management component is studied on the City campus for all five years.
** Years one, two and three are conducted on the City campus and years four and five are conducted on the Bundoora campus. The biotechnology component is studied on the City campus.
** Years one and two are conducted on the City campus and years three to five are shared between the City and Bundoora campuses.
David Bianchi
Bachelor of Engineering
(Mechanical Engineering)
(Honours)

“
I’ve always liked the mechanics of things – how they work, how they are built, the materials they are built with, solving problems and making improvements.

After high school, I started a vocational education program at RMIT before articulating to a degree. I found that understanding the practical side of engineering and the limitations of design was much more important than just understanding the technical side of engineering.

”
Automotive Engineering

What is automotive engineering?
Automotive engineering is a specialised branch of mechanical engineering that focuses on the design, manufacture and operation of engines, cars, trucks, buses, motorcycles and off-road vehicles.

What do automotive engineers do?
Automotive engineers design new products or modify existing ones. They troubleshoot and solve engineering problems and plan and design manufacturing processes. They also use computer simulations for testing safety, invent and apply new technologies to existing designs and research solutions to engineering problems.

Where do automotive engineers work?
Automotive engineers work for companies that manufacture cars, trucks, buses, tractors, trains and military vehicles. They can also work for racing organisations and parts manufacturers.

Project-Based Learning – Warman Design and Build Competition
Each year RMIT engineering students take part in the Asia-Pacific Warman Design and Build Competition organised by Engineers Australia.

Second-year students in mechanical engineering must demonstrate their skills in mechanical design, electronics and embedded programming. Working in teams, they compete against each other for a chance to represent RMIT at the national finals in Sydney.

In 2015, RMIT beat universities from Australia, New Zealand and Malaysia to win the competition with their entry, the Shovel Bot Mach 1, an autonomous robot with a mechanical scoop.

www.engineersaustralia.org.au/warman

STUDY AT RMIT

B074 | Bachelor of Engineering (Automotive Engineering) (Honours)
Build on core studies in mechanical engineering, with a specialisation in automotive engineering to develop economical and sustainable automotive designs or solve automotive engineering problems.
You’ll study vehicle power systems, sustainable vehicle design and automotive manufacturing and vehicle handling and control, vehicle aerodynamics, and vehicle noise and vibration.
The degree incorporates complete car design and has a focus on new technologies that benefit society, such as full-electric and driverless cars, and hybrid power trains and fuel cells.
Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Duration of pathway program</th>
<th>Additional duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Technology – Mechanical major</td>
<td>2 years</td>
<td>9 years</td>
</tr>
<tr>
<td>Engineering (Mechanical)</td>
<td>2 years</td>
<td>2.5 years</td>
</tr>
</tbody>
</table>

B084 | Bachelor of Engineering (Automotive Engineering) (Honours) and Bachelor of Business (Management) double degree
Gain automotive engineering and management expertise to prepare you for leadership roles in the automotive and related industries.
Business skills will prepare you to operate in complex financial systems which are often associated with large engineering projects.
Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

BH118 | Bachelor of Engineering (Automotive Engineering) (Honours) and Bachelor of Industrial Design (Honours) double degree
Technical and creative skills in automotive engineering and industrial design will allow you to create innovative engineering solutions and develop new technology.
A final year industrial design honours project will allow you to integrate your studies in both areas.
Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

AD026 | Associate Degree in Engineering Technology – Mechanical major
The first year introduces you to the fundamental principles of engineering that apply across a range of fields. In second year you can choose to specialise in mechanical engineering.
If you maintain a minimum Grade Point Average of 2.00 out of 4.00, you are guaranteed entry into the Bachelor of Engineering (Automotive Engineering) (Honours), with credit for 192 study points (equivalent to two years’ study).
Prerequisites: Units 3 and 4 – a study score of at least 20 in Mathematical Methods (CAS) and a study score of at least 20 in any English (except EAL) or at least 25 in English (EAL).

C6130 | Advanced Diploma of Engineering (Mechanical)
National Curriculum Code: MEM60012
Gain the theoretical and practical skills to work in the mechanical and manufacturing industries as a technical officer or engineering supervisor/manager.
You’ll develop an understanding of advanced technical and managerial concepts and be able to work in small, medium and large enterprises as well as the defence forces.

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Duration of pathway program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Technology – Mechanical major</td>
<td>2 years</td>
</tr>
<tr>
<td>Engineering (Mechanical)</td>
<td>2 years</td>
</tr>
</tbody>
</table>

C010 | Associate Degree.

*Years one and two are conducted on the City campus and years three and four are conducted on the Bundoora campus.
**Years one and two are conducted on the City campus and years three to five are shared between the City and Bundoora campuses.
Get Your Motor Running

RMIT Racing is a student-run organisation that has brought together a diverse range of students to design, manufacture and construct a Formula SAE open-wheel race car.

The team takes part in competitions organised by the Society of Automotive Engineering (SAE) International, the largest university-based engineering competition in the world.

The competition tests students’ ability to both produce and justify an efficient and race-worthy vehicle.

RMIT Racing isn’t just a hobby. It’s a place for students to build on and develop invaluable practical skills. These are interdisciplinary – covering engineering, business and communications – and ultimately provide students with a range of work-ready skills.

www.facebook.com/RMITracing
Mechatronics and Manufacturing Systems

Combine manufacturing, mechanical and electronic engineering to design automated assembly systems and processes.

RMIT is a leader and innovator in mechatronics and manufacturing engineering. RMIT’s multidisciplinary programs provide you with the skills to succeed in a rapidly evolving industry.
You’ll explore a broad range of areas, including materials and machining, automation, systems and control. You can gain specialised experience in the Advanced Manufacturing Precinct, working with industry on real-life projects.

RMIT ranked in the top 100 in the world for mechanical, aeronautical and manufacturing engineering

Source: QS World University Rankings by Subject 2015.
Mechatronics and Manufacturing Systems

What do mechatronics and manufacturing engineers do?

Mechatronics and manufacturing engineers design and improve systems that turn raw materials into products with minimum time, materials and energy waste. They design and maintain machinery with electronic and computer control systems, such as aircraft, robots, motor vehicles, cameras, power generators and industrial machinery.

Where do mechatronics and manufacturing engineers work?

Mechatronics and manufacturing engineers may find work in:
- laboratories
- processing plants
- manufacturing plants
- engineering design offices

Robotic technology gives subtractive manufacturing capability a greater diversity of applications.

"There’s a lot of project-based learning in the degree, which allows for greater skill development. We also have a lot of interaction with industry, which fosters an understanding of where we are heading and what’s expected of us as professional engineers. "

"The fields of mechatronics and manufacturing are undergoing massive transformation and growth, especially through the development of additive manufacturing, like 3D printing. Many things that were previously not possible have suddenly become open fields for development, especially within medicine.

"At RMIT, I’ve developed confidence in my ability to tackle problems and learn new topics. I’ve also gained valuable skills working as part of a group and solving problems together."

Alex Ware
Bachelor of Engineering (Advanced Manufacturing and Mechatronics) (Honours)

STUDY AT RMIT

BH068 | Bachelor of Engineering (Advanced Manufacturing and Mechatronics) (Honours)
Focuses on robotics and control, high-speed automation, manufacturing management and advanced material and properties. Emphasis is placed on the need to view a manufacturing system as being made up of people, machines and information.
Specialised studies include computer-aided manufacturing, quality management, mechatronic design and advanced robotics.
Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bh068

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Duration of pathway program</th>
<th>Additional duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A02 Engineering Technology – Advanced Manufacturing and Mechatronics major</td>
<td>2 years</td>
<td>2 years</td>
</tr>
</tbody>
</table>

BH086 | Bachelor of Engineering (Advanced Manufacturing and Mechatronics) (Honours) and Bachelor of Business (International Business)
Combine the latest in mechatronics technologies, systems engineering and additive manufacturing with international business studies and high-level financial and economic analysis.
You’ll be able to design and manufacture mechanical devices and provide solutions, with the business know-how to succeed in the international market. You’ll learn to design, build and operate smart systems in the aerospace, automotive, food processing and electronics industries and oversee the development of large-scale, global manufacturing facilities.
Prerequisites: Units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).
www.rmit.edu.au/programs/bh086

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Duration of pathway program</th>
<th>Additional duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A02 Engineering Technology – Advanced Manufacturing and Mechatronics major</td>
<td>2 years</td>
<td>2 years</td>
</tr>
</tbody>
</table>

AD026 | Associate Degree in Engineering Technology – Advanced Manufacturing and Mechatronics major
The first year introduces you to the fundamental principles of engineering that apply across a range of fields. In second year you can choose to specialise in advanced manufacturing and mechatronics.
If you maintain a minimum Grade Point Average of 2.0 out of 4.0, you are guaranteed entry into the Bachelor of Engineering (Advanced Manufacturing and Mechatronics) (Honours), with credit for 192 study points (equivalent to two years’ study).
Prerequisites: Units 3 and 4 – a study score of at least 20 in Mathematical Methods (CAS) and a study score of at least 20 in any English (except EAL) or at least 25 in English (EAL).
www.rmit.edu.au/programs/ad026

AD0 = Associate Degree.
* Years one and two are conducted on the City campus and years three and four are conducted on the Bundoora campus.
** Years one, two and three are conducted on the City campus and years four and five are shared between the City and Bundoora campuses.
Creating Innovative Solutions

The Advanced Manufacturing Precinct (AMP) combines RMIT’s expertise in technology and design innovation.

RMIT are developing the next generation of engineers, designers and technicians, working closely with industry both in Australia and internationally. RMIT’s vision is to be the leader in the implementation of the next wave of manufacturing in Australia.

The Engineering Learning Factory at the AMP provides students with unique learning experiences on real industry problems and products in a work-emulating environment. It helps them understand industry needs, professional requirements and the product realisation process. Projects are team-based and involve higher education and vocational education students from different disciplines.

Find out more at www.rmit.edu.au/advancedmanufacturing.
How to Apply

Before applying for a program at RMIT, refer to the program information available at www.rmit.edu.au/study-with-us. All the information you need to apply is at www.rmit.edu.au/study-with-us/applying-to-rmit.

<table>
<thead>
<tr>
<th>How to Apply by Program and Student Type</th>
<th>Semester 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current Year 12 Students</td>
</tr>
<tr>
<td>Degree and associate degree</td>
<td>VTAC application</td>
</tr>
<tr>
<td>Certificate IV, diploma, advanced diploma</td>
<td>VTAC application</td>
</tr>
<tr>
<td>Certificate III and below*</td>
<td>RMIT school-based application</td>
</tr>
</tbody>
</table>

*Some certificate III and below programs are administered by direct application. This will be explained in the individual program information available at www.rmit.edu.au/study-with-us.

Current Year 12 Students
If you are a current Year 12 student applying for Semester 1, you must apply through VTAC for all programs except some that are certificate III and below, which may require you to submit an RMIT school-based application.

Non-Year 12 Students
If you are a non-Year 12 student applying for Semester 1, you must apply for degrees and associate degrees through VTAC but have the choice of applying for certificate IV, diploma and advanced diplomas either through VTAC or direct to RMIT. Please select one application method only.

RMIT Students and Recent Graduates
Current RMIT students and recent graduates can fast-track their application for a new program by applying direct to RMIT as an internal applicant.

Mid-Year Entry (Semester 2)
Not all RMIT programs will accept applications for mid-year entry. A list of programs accepting mid-year applications is published in May on the RMIT website (www.rmit.edu.au/midyear).

Selection Tasks
Many programs at RMIT have selection tasks as part of the selection process, such as:
- an interview
- a test
- a folio
- a supplementary form or pre-selection kit

It is very important that you carefully read any instructions to complete a program’s selection tasks. Selection tasks are listed under programs on the VTAC or the RMIT websites. These selection tasks are compulsory. Applications without selection tasks will not be considered.

Entry Requirements
To be considered for admission, you must meet RMIT University entry requirements as well as specific program entry requirements. For more information please refer to the program information available on the RMIT website (www.rmit.edu.au/study-with-us).

Study Scores
Study scores listed in this guide are subject to change.

RMIT’s My Brochure

The power of personalisation is at your fingertips.

Create your customised resource in moments with RMIT's new online tool.

“RMIT’s My Brochure is an excellent resource. Students put in their requested information, and minutes later, receive a personalised brochure.”

Jacky Burton
Professional Career Development Practitioner
The Knox School

Download yours today!
www.rmit.edu.au/study-with-us/my-brochure
Tuition Fees for Certificates, Diplomas and Advanced Diplomas

The tuition fees you pay depend on whether you are offered a Victorian Government-subsidised place or a full-fee place, based on the eligibility criteria.

Victorian Government—Subsidised Places

For eligible students, this training is delivered with Victorian and Commonwealth Government funding.

Tuition fees for a government-subsidised place vary according to each program. For a full list of program fees for a government-subsidised place visit www.rmit.edu.au/programs/fees/vocational/govtsub.

You will be offered a government-subsidised place if you meet the eligibility criteria based on your citizenship, age, prior education, the number of government-subsidised programs you have commenced in your lifetime at government-subsidised programs you are studying in the current year and the number of discipline areas (bands) of your individual enrolled courses, not the overall program. For more information about what fees you will pay in 2017 visit www.rmit.edu.au/programs/fees.

Commonwealth Supported Places

A Commonwealth supported place is a place at university where the tuition fee is jointly paid by you and the Australian Government. Your share of the fee (student contribution) is set by the government and is determined by the discipline areas (bands) of your individual enrolled courses, not the overall program. For more information about the new program can be found at www.education.gov.au/vet-student-loans.

If you are applying for a government-subsidised place, you will be required to provide documentation to establish your eligibility.

You will be enrolled according to how your qualifications are defined in the relevant industry training package. This may impact on your eligibility for a government-subsidised place for individual qualifications. For more information visit www.rmit.edu.au/programs/apply/vocational/eligibility.

RMIT University’s Registered Training Organisation (RTO) code is 3046.

Fee Concession

You may be entitled to a concession on your tuition fees if you are in a government-subsidised place and you meet the eligibility criteria.

For more information about the eligibility criteria and how to apply visit www.rmit.edu.au/programs/fees/vocational/concession.

Full-Fee Places

If you do not meet the criteria for a government-subsidised place, you will be offered a full-fee place. Tuition fees for an full-fee place vary according to each program. For a full list of program fees for full-fee places visit www.rmit.edu.au/programs/fees/vocational/fullfee.

Financial assistance may be available through the VET FEE-HELP scheme.

VET Student Loans

Subject to the passage of legislation, VET Student Loans will commence on 1 January 2017, replacing the current VET FEE-HELP scheme. Information about the new program can be found at www.education.gov.au/vet-student-loans.

Tuition Fees for Degrees and Associate Degrees

Commonwealth Supported Places

A Commonwealth supported place is a place at university where the tuition fee is jointly paid by you and the Australian Government. Your share of the fee (student contribution) is set by the government and is determined by the discipline areas (bands) of your individual enrolled courses, not the overall program. For more information about what fees you will pay in 2017 visit www.rmit.edu.au/programs/fees.

HECS-HELP

You may be eligible to defer payment of the student contribution through the HECS-HELP loan scheme if you are an Australian citizen or holder of an Australian Permanent Humanitarian Visa. You must pay your student contribution up front if you are a New Zealand citizen or permanent resident (other than Australian Permanent Humanitarian Visa holder). For more information visit www.rmit.edu.au/programs/fees/helploans/hecshelp.

Full-Fee Places

Students in full-fee places are required to pay a tuition fee that covers the full tuition costs of their program. Financial assistance may be available through the FEE-HELP scheme. The tuition fees vary according to each program and are adjusted on an annual basis. Visit www.rmit.edu.au/programs/fees for more information.

Scholarships

RMIT offers more than 2000 coursework and research scholarships to vocational and higher education students.

Equity scholarships provide an opportunity for students who have experienced financial or educational disadvantage to achieve their academic goals, while merit scholarships recognise and award outstanding academic success.

For more information visit www.rmit.edu.au/scholarships.

Fee information relates to 2017 and should only be used as a guide. Fees are set on an annual basis and may be subject to change each calendar year.

www.rmit.edu.au/programs/fees
Discover your future in 360°

Wherever you are in the world, you can now explore RMIT in 360° with the Discover RMIT app.

Experience RMIT campus life, explore the learning spaces and catapult yourself into Melbourne city culture.

RMIT is ready for you. What are you waiting for?

Download the app today
www.rmit.edu.au/discover

Further Information
Info Corner
330 Swanston Street
(cnr La Trobe Street)
Melbourne VIC 3000
Tel. +61 3 9925 2260
www.rmit.edu.au/infocorner

This guide is designed for Australian and New Zealand citizens and permanent residents of Australia.

Further information for international/non-residents of Australia:
RMIT International
Tel. +61 3 8676 7047
(within Australia: 1800 998 414)
Email: isu@rmit.edu.au
www.rmit.edu.au/international

Every effort has been made to ensure the information contained in this publication is accurate and current at the date of printing. For the most up-to-date information, please refer to the RMIT University website before lodging your application. RMIT University CRICOS Provider Code: 00122A. RMIT University Registered Training Organisation code: 3046. Prepared April 2016. 14257 0416