Bachelor of Engineering (Aerospace Engineering)(Honours)/Bachelor of Business (Management)

Combine aerospace engineering with business skills, so you'll be prepared for leadership roles in an exciting global industry.

Aerospace engineering is concerned with the analysis, design and operation of sophisticated aerospace hardware and software systems. The term ‘aerospace’ encompasses both atmospheric and space flight.

The industry is complex and demanding, and requires talented, creative and motivated people.

To succeed in this program, you’ll need well-developed skills in mathematics and physical sciences, as well as good communication skills.

Management is concerned with organisational planning, coordination and resource direction.

Managers draw on technical skills ranging from accounting to organisational behaviour, and they are reliant on analysis and leadership skills.

Why double-up?

Many engineers quickly move into positions of management within organisations. This double degree will give you an advantage, allowing you to progress into positions of responsibility and influence.

A business degree will prepare you to operate in a complex financial system – something often associated with large engineering projects.

Industry connections

In the final year of studies you’ll undertake a major project that is either industry-based or simulates an industrial situation.

You’ll work with industry leaders to use the theory and practical experience gained through the program to solve a problem.

In order to graduate from this program you must complete a minimum 12 weeks of engineering industry experience that allows you to gain first-hand experience in an engineering practice environment under the supervision of a practising professional engineer. The nature and timing of this engineering experience can take a range of forms.

Opportunities exist for an overseas work placement of between six and 12 months (this satisfies the work experience requirement). These placements are normally taken during a one-year break in the middle or at the end of the third or fourth years of the degree.

International opportunities

RMIT has an international exchange program agreement with Nanjing University of Aeronautics and Astronautics (NUAA), China. Second year students are selected to attend this from early September to the middle of January.

You’ll gain credit points for your studies, which will include elementary Chinese, aerodynamics, design of aircraft and structural design and optimisation.

Career outlook

The most likely destinations for graduates are:
- design and manufacturing companies including Boeing Australia, Airbus, BAE Systems Australia and Australian Aerospace
- defence forces such as Royal Australian Navy, Australian Army and Royal Australian Air Force
- Defence Science and Technology Group and Capability Acquisition and Sustainment Group
- Australian and international airlines
- airworthiness organisations such as Civil Aviation Safety Authority and Department of Defence
- general aviation.

Aerospace engineers gain skills in various fields of advanced technology that are in high demand in non-aerospace organisations, including the automotive industry, power generation industry, software support companies and research organisations.

Professional recognition

This program is fully accredited by Engineers Australia. Graduates of the program are eligible for graduate membership of Engineers Australia. Full membership as a professional engineer may be obtained after an appropriate period of professional practice.
The double degree comprises core courses covering essential material, and elective courses with which you can tailor your degree.

Core discipline areas include:

- engineering design
- engineering practice
- engineering professional development
- engineering sciences
- business.

These studies are contained within the aerospace disciplines of:

- aerodynamics
- aerospace materials and structures
- aerospace propulsion
- aerospace systems
- design
- dynamics and control
- engineering project management mathematics
- professional skill development
- structural analysis
- thermodynamics.

The specific focus on aerospace starts in the first semester.

As there is increasing demand across the industry for long-term solutions regarding sustainability, this topic is built in to multiple areas of the program.

You’ll be provided with multiple opportunities for experimental learning across the program including a design, build, fly challenge for micro-aerial vehicles, an Engineers Without Borders challenge, and other hands-on activities.

Year 1

<table>
<thead>
<tr>
<th>Engineering, Society and Sustainability</th>
<th>Introduction to Aircraft</th>
<th>Engineering Mathematics C</th>
<th>Mechanics and Materials 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Engineering Analysis</td>
<td>Mechanics and Materials 2</td>
<td>Dynamics</td>
<td>Maths and Stats for Aero, Mech and Auto</td>
</tr>
<tr>
<td>Design for Manufacture and Assembly</td>
<td>Systems Engineering</td>
<td>Aerodynamics and Flight Mechanics</td>
<td>Accounting in Organisations and Society</td>
</tr>
<tr>
<td>Organisational Analysis</td>
<td></td>
<td></td>
<td>Organisational Analysis</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Ethics and Governance</th>
<th>Leadership and Decision Making</th>
<th>Prices and Markets</th>
<th>Marketing Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Law</td>
<td>Macroeconomics 1</td>
<td>Work in Global Society</td>
<td>Contemporary Management: Issues and Challenges</td>
</tr>
<tr>
<td>Professional Research Project 1</td>
<td>Professional Research Project 2</td>
<td></td>
<td>Creativity, Innovation and Design</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Aerospace Design Project</th>
<th>Management in Practice</th>
<th>Business elective</th>
<th>University elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Dynamics and Control</td>
<td>Advanced Aerodynamics</td>
<td>Aerospace Propulsion</td>
<td>Aerospace Structures</td>
</tr>
<tr>
<td>Aerospace Finite Element Methods</td>
<td>Management of Aerospace Design and Research</td>
<td>Strategic Management</td>
<td>Aerospace elective</td>
</tr>
</tbody>
</table>

Year 5

Entrance requirements

Successful completion of an Australian Year 12 senior secondary certificate of education or equivalent.

Prerequisites

Current Year 12 prerequisites units 3 and 4 – a study score of at least 25 in Mathematical Methods (CAS) and a study score of at least 25 in any English (except EAL) or at least 30 in English (EAL).

Additional information

Non-Year 12 applicants may submit additional information if they would like it to be considered. For semester 1 intake, this can be completed through the VTAC Personal Statement online. For semester 2 intake, this can be completed through the personal statement in the Apply Direct application.

This information is designed for Australian and New Zealand citizens and permanent residents of Australia.

Disclaimer: Every effort has been made to ensure the information contained in this publication is accurate and current at the date of printing. For the most up-to-date information, please refer to the RMIT University website before lodging your application. Visit www.rmit.edu.au.